| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178 |
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- try:
- from .rtcdet_basic import BasicConv, RTCBlock
- except:
- from rtcdet_basic import BasicConv, RTCBlock
- # PaFPN-ELAN
- class RTCPaFPN(nn.Module):
- def __init__(self,
- in_dims = [256, 512, 1024],
- out_dim = 256,
- width = 1.0,
- depth = 1.0,
- act_type = 'silu',
- norm_type = 'BN',
- depthwise = False):
- super(RTCPaFPN, self).__init__()
- print('==============================')
- print('FPN: {}'.format("RTC PaFPN"))
- # ---------------- Basic parameters ----------------
- self.in_dims = in_dims
- self.width = width
- self.depth = depth
- c3, c4, c5 = in_dims
- # ---------------- Top-dwon FPN----------------
- ## P5 -> P4
- self.reduce_layer_1 = BasicConv(c5, round(512*width),
- kernel_size=1, padding=0, stride=1,
- act_type=act_type, norm_type=norm_type)
- self.top_down_layer_1 = RTCBlock(in_dim = round(512*width) + c4,
- out_dim = round(512*width),
- num_blocks = round(3*depth),
- shortcut = False,
- act_type = act_type,
- norm_type = norm_type,
- depthwise = depthwise,
- )
- ## P4 -> P3
- self.reduce_layer_2 = BasicConv(round(512*width), round(256*width),
- kernel_size=1, padding=0, stride=1,
- act_type=act_type, norm_type=norm_type)
- self.top_down_layer_2 = RTCBlock(in_dim = round(256*width) + c3,
- out_dim = round(256*width),
- num_blocks = round(3*depth),
- shortcut = False,
- act_type = act_type,
- norm_type = norm_type,
- depthwise = depthwise,
- )
- # ---------------- Bottom-up PAN ----------------
- ## P3 -> P4
- self.dowmsample_layer_1 = BasicConv(round(256*width), round(256*width),
- kernel_size=3, padding=1, stride=2,
- act_type=act_type, norm_type=norm_type, depthwise=depthwise)
- self.bottom_up_layer_1 = RTCBlock(in_dim = round(256*width) + round(256*width),
- out_dim = round(512*width),
- num_blocks = round(3*depth),
- shortcut = False,
- act_type = act_type,
- norm_type = norm_type,
- depthwise = depthwise,
- )
- ## P4 -> P5
- self.dowmsample_layer_2 = BasicConv(round(512*width), round(512*width),
- kernel_size=3, padding=1, stride=2,
- act_type=act_type, norm_type=norm_type, depthwise=depthwise)
- self.bottom_up_layer_2 = RTCBlock(in_dim = round(512*width) + round(512*width),
- out_dim = round(1024*width),
- num_blocks = round(3*depth),
- shortcut = False,
- act_type = act_type,
- norm_type = norm_type,
- depthwise = depthwise,
- )
- # ---------------- Output projection ----------------
- ## Output projs
- self.out_layers = nn.ModuleList([
- BasicConv(in_dim, out_dim, kernel_size=1, act_type=act_type, norm_type=norm_type)
- for in_dim in [round(256*width), round(512*width), round(1024*width)]
- ])
- self.out_dims = [out_dim] * 3
- self.init_weights()
-
- def init_weights(self):
- """Initialize the parameters."""
- for m in self.modules():
- if isinstance(m, torch.nn.Conv2d):
- # In order to be consistent with the source code,
- # reset the Conv2d initialization parameters
- m.reset_parameters()
- def forward(self, features):
- c3, c4, c5 = features
- # Top down
- ## P5 -> P4
- c6 = self.reduce_layer_1(c5)
- c7 = F.interpolate(c6, scale_factor=2.0)
- c8 = torch.cat([c7, c4], dim=1)
- c9 = self.top_down_layer_1(c8)
- ## P4 -> P3
- c10 = self.reduce_layer_2(c9)
- c11 = F.interpolate(c10, scale_factor=2.0)
- c12 = torch.cat([c11, c3], dim=1)
- c13 = self.top_down_layer_2(c12)
- # Bottom up
- ## p3 -> P4
- c14 = self.dowmsample_layer_1(c13)
- c15 = torch.cat([c14, c10], dim=1)
- c16 = self.bottom_up_layer_1(c15)
- ## P4 -> P5
- c17 = self.dowmsample_layer_2(c16)
- c18 = torch.cat([c17, c6], dim=1)
- c19 = self.bottom_up_layer_2(c18)
- out_feats = [c13, c16, c19] # [P3, P4, P5]
-
- # output proj layers
- out_feats_proj = []
- for feat, layer in zip(out_feats, self.out_layers):
- out_feats_proj.append(layer(feat))
- return out_feats_proj
- def build_fpn(cfg, in_dims, out_dim):
- # build neck
- if cfg['fpn'] == 'rtc_pafpn':
- fpn_net = RTCPaFPN(in_dims = in_dims,
- out_dim = out_dim,
- width = cfg['width'],
- depth = cfg['depth'],
- act_type = cfg['fpn_act'],
- norm_type = cfg['fpn_norm'],
- depthwise = cfg['fpn_depthwise']
- )
- else:
- raise NotImplementedError("Unknown fpn: {}".format(cfg['fpn']))
- return fpn_net
- if __name__ == '__main__':
- import time
- from thop import profile
- cfg = {
- 'fpn': 'rtc_pafpn',
- 'fpn_act': 'silu',
- 'fpn_norm': 'BN',
- 'fpn_depthwise': False,
- 'width': 1.0,
- 'depth': 1.0,
- 'ratio': 1.0,
- }
- model = build_fpn(cfg, in_dims=[256, 512, 1024], out_dim=256)
- pyramid_feats = [torch.randn(1, 256, 80, 80), torch.randn(1, 512, 40, 40), torch.randn(1, 1024, 20, 20)]
- t0 = time.time()
- outputs = model(pyramid_feats)
- t1 = time.time()
- print('Time: ', t1 - t0)
- for out in outputs:
- print(out.shape)
- print('==============================')
- flops, params = profile(model, inputs=(pyramid_feats, ), verbose=False)
- print('==============================')
- print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2))
- print('Params : {:.2f} M'.format(params / 1e6))
|