yolox_config.py 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437
  1. # YOLOx Config
  2. yolox_cfg = {
  3. 'yolox_n':{
  4. # ---------------- Model config ----------------
  5. ## Backbone
  6. 'backbone': 'cspdarknet',
  7. 'bk_act': 'silu',
  8. 'bk_norm': 'BN',
  9. 'bk_dpw': False,
  10. 'width': 0.25,
  11. 'depth': 0.34,
  12. 'stride': [8, 16, 32], # P3, P4, P5
  13. 'max_stride': 32,
  14. ## FPN
  15. 'fpn': 'yolox_pafpn',
  16. 'fpn_reduce_layer': 'conv',
  17. 'fpn_downsample_layer': 'conv',
  18. 'fpn_core_block': 'cspblock',
  19. 'fpn_act': 'silu',
  20. 'fpn_norm': 'BN',
  21. 'fpn_depthwise': False,
  22. ## Head
  23. 'head': 'decoupled_head',
  24. 'head_act': 'silu',
  25. 'head_norm': 'BN',
  26. 'num_cls_head': 2,
  27. 'num_reg_head': 2,
  28. 'head_depthwise': False,
  29. # ---------------- Train config ----------------
  30. ## input
  31. 'multi_scale': [0.7, 1.25], # 448 -> 800
  32. 'trans_type': 'yolox_n',
  33. # ---------------- Assignment config ----------------
  34. ## matcher
  35. 'matcher': {'center_sampling_radius': 2.5,
  36. 'topk_candicate': 10},
  37. # ---------------- Loss config ----------------
  38. ## loss weight
  39. 'loss_obj_weight': 1.0,
  40. 'loss_cls_weight': 1.0,
  41. 'loss_box_weight': 5.0,
  42. # ---------------- Train config ----------------
  43. 'trainer_type': 'yolox',
  44. },
  45. 'yolox_s':{
  46. # ---------------- Model config ----------------
  47. ## Backbone
  48. 'backbone': 'cspdarknet',
  49. 'bk_act': 'silu',
  50. 'bk_norm': 'BN',
  51. 'bk_dpw': False,
  52. 'width': 0.50,
  53. 'depth': 0.34,
  54. 'stride': [8, 16, 32], # P3, P4, P5
  55. 'max_stride': 32,
  56. ## FPN
  57. 'fpn': 'yolox_pafpn',
  58. 'fpn_reduce_layer': 'conv',
  59. 'fpn_downsample_layer': 'conv',
  60. 'fpn_core_block': 'cspblock',
  61. 'fpn_act': 'silu',
  62. 'fpn_norm': 'BN',
  63. 'fpn_depthwise': False,
  64. ## Head
  65. 'head': 'decoupled_head',
  66. 'head_act': 'silu',
  67. 'head_norm': 'BN',
  68. 'num_cls_head': 2,
  69. 'num_reg_head': 2,
  70. 'head_depthwise': False,
  71. # ---------------- Train config ----------------
  72. ## input
  73. 'multi_scale': [0.7, 1.25], # 448 -> 800
  74. 'trans_type': 'yolox_s',
  75. # ---------------- Assignment config ----------------
  76. ## matcher
  77. 'matcher': {'center_sampling_radius': 2.5,
  78. 'topk_candicate': 10},
  79. # ---------------- Loss config ----------------
  80. ## loss weight
  81. 'loss_obj_weight': 1.0,
  82. 'loss_cls_weight': 1.0,
  83. 'loss_box_weight': 5.0,
  84. # ---------------- Train config ----------------
  85. 'trainer_type': 'yolox',
  86. },
  87. 'yolox_m':{
  88. # ---------------- Model config ----------------
  89. ## Backbone
  90. 'backbone': 'cspdarknet',
  91. 'bk_act': 'silu',
  92. 'bk_norm': 'BN',
  93. 'bk_dpw': False,
  94. 'width': 0.75,
  95. 'depth': 0.67,
  96. 'stride': [8, 16, 32], # P3, P4, P5
  97. 'max_stride': 32,
  98. ## FPN
  99. 'fpn': 'yolox_pafpn',
  100. 'fpn_reduce_layer': 'conv',
  101. 'fpn_downsample_layer': 'conv',
  102. 'fpn_core_block': 'cspblock',
  103. 'fpn_act': 'silu',
  104. 'fpn_norm': 'BN',
  105. 'fpn_depthwise': False,
  106. ## Head
  107. 'head': 'decoupled_head',
  108. 'head_act': 'silu',
  109. 'head_norm': 'BN',
  110. 'num_cls_head': 2,
  111. 'num_reg_head': 2,
  112. 'head_depthwise': False,
  113. # ---------------- Train config ----------------
  114. ## input
  115. 'multi_scale': [0.7, 1.25], # 448 -> 800
  116. 'trans_type': 'yolox_m',
  117. # ---------------- Assignment config ----------------
  118. ## matcher
  119. 'matcher': {'center_sampling_radius': 2.5,
  120. 'topk_candicate': 10},
  121. # ---------------- Loss config ----------------
  122. ## loss weight
  123. 'loss_obj_weight': 1.0,
  124. 'loss_cls_weight': 1.0,
  125. 'loss_box_weight': 5.0,
  126. # ---------------- Train config ----------------
  127. 'trainer_type': 'yolox',
  128. },
  129. 'yolox_l':{
  130. # ---------------- Model config ----------------
  131. ## Backbone
  132. 'backbone': 'cspdarknet',
  133. 'bk_act': 'silu',
  134. 'bk_norm': 'BN',
  135. 'bk_dpw': False,
  136. 'width': 1.0,
  137. 'depth': 1.0,
  138. 'stride': [8, 16, 32], # P3, P4, P5
  139. 'max_stride': 32,
  140. ## FPN
  141. 'fpn': 'yolox_pafpn',
  142. 'fpn_reduce_layer': 'conv',
  143. 'fpn_downsample_layer': 'conv',
  144. 'fpn_core_block': 'cspblock',
  145. 'fpn_act': 'silu',
  146. 'fpn_norm': 'BN',
  147. 'fpn_depthwise': False,
  148. ## Head
  149. 'head': 'decoupled_head',
  150. 'head_act': 'silu',
  151. 'head_norm': 'BN',
  152. 'num_cls_head': 2,
  153. 'num_reg_head': 2,
  154. 'head_depthwise': False,
  155. # ---------------- Train config ----------------
  156. ## input
  157. 'multi_scale': [0.7, 1.25], # 448 -> 800
  158. 'trans_type': 'yolox_l',
  159. # ---------------- Assignment config ----------------
  160. ## matcher
  161. 'matcher': {'center_sampling_radius': 2.5,
  162. 'topk_candicate': 10},
  163. # ---------------- Loss config ----------------
  164. ## loss weight
  165. 'loss_obj_weight': 1.0,
  166. 'loss_cls_weight': 1.0,
  167. 'loss_box_weight': 5.0,
  168. # ---------------- Train config ----------------
  169. 'trainer_type': 'yolox',
  170. },
  171. 'yolox_x':{
  172. # ---------------- Model config ----------------
  173. ## Backbone
  174. 'backbone': 'cspdarknet',
  175. 'bk_act': 'silu',
  176. 'bk_norm': 'BN',
  177. 'bk_dpw': False,
  178. 'width': 1.25,
  179. 'depth': 1.34,
  180. 'stride': [8, 16, 32], # P3, P4, P5
  181. 'max_stride': 32,
  182. ## FPN
  183. 'fpn': 'yolox_pafpn',
  184. 'fpn_reduce_layer': 'conv',
  185. 'fpn_downsample_layer': 'conv',
  186. 'fpn_core_block': 'cspblock',
  187. 'fpn_act': 'silu',
  188. 'fpn_norm': 'BN',
  189. 'fpn_depthwise': False,
  190. ## Head
  191. 'head': 'decoupled_head',
  192. 'head_act': 'silu',
  193. 'head_norm': 'BN',
  194. 'num_cls_head': 2,
  195. 'num_reg_head': 2,
  196. 'head_depthwise': False,
  197. # ---------------- Train config ----------------
  198. ## input
  199. 'multi_scale': [0.7, 1.25], # 448 -> 800
  200. 'trans_type': 'yolox_x',
  201. # ---------------- Assignment config ----------------
  202. ## matcher
  203. 'matcher': {'center_sampling_radius': 2.5,
  204. 'topk_candicate': 10},
  205. # ---------------- Loss config ----------------
  206. ## loss weight
  207. 'loss_obj_weight': 1.0,
  208. 'loss_cls_weight': 1.0,
  209. 'loss_box_weight': 5.0,
  210. # ---------------- Train config ----------------
  211. 'trainer_type': 'yolox',
  212. },
  213. }
  214. yolox_adamw_cfg = {
  215. 'yolox_n_adamw':{
  216. # ---------------- Model config ----------------
  217. ## Backbone
  218. 'backbone': 'cspdarknet',
  219. 'bk_act': 'silu',
  220. 'bk_norm': 'BN',
  221. 'bk_dpw': False,
  222. 'width': 0.25,
  223. 'depth': 0.34,
  224. 'stride': [8, 16, 32], # P3, P4, P5
  225. 'max_stride': 32,
  226. ## FPN
  227. 'fpn': 'yolox_pafpn',
  228. 'fpn_reduce_layer': 'conv',
  229. 'fpn_downsample_layer': 'conv',
  230. 'fpn_core_block': 'cspblock',
  231. 'fpn_act': 'silu',
  232. 'fpn_norm': 'BN',
  233. 'fpn_depthwise': False,
  234. ## Head
  235. 'head': 'decoupled_head',
  236. 'head_act': 'silu',
  237. 'head_norm': 'BN',
  238. 'num_cls_head': 2,
  239. 'num_reg_head': 2,
  240. 'head_depthwise': False,
  241. # ---------------- Train config ----------------
  242. ## input
  243. 'multi_scale': [0.5, 1.25], # 320 -> 800
  244. 'trans_type': 'yolov5_n',
  245. # ---------------- Assignment config ----------------
  246. ## matcher
  247. 'matcher': {'center_sampling_radius': 2.5,
  248. 'topk_candicate': 10},
  249. # ---------------- Loss config ----------------
  250. ## loss weight
  251. 'loss_obj_weight': 1.0,
  252. 'loss_cls_weight': 1.0,
  253. 'loss_box_weight': 5.0,
  254. # ---------------- Train config ----------------
  255. 'trainer_type': 'rtcdet',
  256. },
  257. 'yolox_s_adamw':{
  258. # ---------------- Model config ----------------
  259. ## Backbone
  260. 'backbone': 'cspdarknet',
  261. 'bk_act': 'silu',
  262. 'bk_norm': 'BN',
  263. 'bk_dpw': False,
  264. 'width': 0.50,
  265. 'depth': 0.34,
  266. 'stride': [8, 16, 32], # P3, P4, P5
  267. 'max_stride': 32,
  268. ## FPN
  269. 'fpn': 'yolox_pafpn',
  270. 'fpn_reduce_layer': 'conv',
  271. 'fpn_downsample_layer': 'conv',
  272. 'fpn_core_block': 'cspblock',
  273. 'fpn_act': 'silu',
  274. 'fpn_norm': 'BN',
  275. 'fpn_depthwise': False,
  276. ## Head
  277. 'head': 'decoupled_head',
  278. 'head_act': 'silu',
  279. 'head_norm': 'BN',
  280. 'num_cls_head': 2,
  281. 'num_reg_head': 2,
  282. 'head_depthwise': False,
  283. # ---------------- Train config ----------------
  284. ## input
  285. 'multi_scale': [0.5, 1.25], # 320 -> 800
  286. 'trans_type': 'yolov5_s',
  287. # ---------------- Assignment config ----------------
  288. ## matcher
  289. 'matcher': {'center_sampling_radius': 2.5,
  290. 'topk_candicate': 10},
  291. # ---------------- Loss config ----------------
  292. ## loss weight
  293. 'loss_obj_weight': 1.0,
  294. 'loss_cls_weight': 1.0,
  295. 'loss_box_weight': 5.0,
  296. # ---------------- Train config ----------------
  297. 'trainer_type': 'rtcdet',
  298. },
  299. 'yolox_m_adamw':{
  300. # ---------------- Model config ----------------
  301. ## Backbone
  302. 'backbone': 'cspdarknet',
  303. 'bk_act': 'silu',
  304. 'bk_norm': 'BN',
  305. 'bk_dpw': False,
  306. 'width': 0.75,
  307. 'depth': 0.67,
  308. 'stride': [8, 16, 32], # P3, P4, P5
  309. 'max_stride': 32,
  310. ## FPN
  311. 'fpn': 'yolox_pafpn',
  312. 'fpn_reduce_layer': 'conv',
  313. 'fpn_downsample_layer': 'conv',
  314. 'fpn_core_block': 'cspblock',
  315. 'fpn_act': 'silu',
  316. 'fpn_norm': 'BN',
  317. 'fpn_depthwise': False,
  318. ## Head
  319. 'head': 'decoupled_head',
  320. 'head_act': 'silu',
  321. 'head_norm': 'BN',
  322. 'num_cls_head': 2,
  323. 'num_reg_head': 2,
  324. 'head_depthwise': False,
  325. # ---------------- Train config ----------------
  326. ## input
  327. 'multi_scale': [0.5, 1.25], # 320 -> 800
  328. 'trans_type': 'yolov5_m',
  329. # ---------------- Assignment config ----------------
  330. ## matcher
  331. 'matcher': {'center_sampling_radius': 2.5,
  332. 'topk_candicate': 10},
  333. # ---------------- Loss config ----------------
  334. ## loss weight
  335. 'loss_obj_weight': 1.0,
  336. 'loss_cls_weight': 1.0,
  337. 'loss_box_weight': 5.0,
  338. # ---------------- Train config ----------------
  339. 'trainer_type': 'rtcdet',
  340. },
  341. 'yolox_l_adamw':{
  342. # ---------------- Model config ----------------
  343. ## Backbone
  344. 'backbone': 'cspdarknet',
  345. 'bk_act': 'silu',
  346. 'bk_norm': 'BN',
  347. 'bk_dpw': False,
  348. 'width': 1.0,
  349. 'depth': 1.0,
  350. 'stride': [8, 16, 32], # P3, P4, P5
  351. 'max_stride': 32,
  352. ## FPN
  353. 'fpn': 'yolox_pafpn',
  354. 'fpn_reduce_layer': 'conv',
  355. 'fpn_downsample_layer': 'conv',
  356. 'fpn_core_block': 'cspblock',
  357. 'fpn_act': 'silu',
  358. 'fpn_norm': 'BN',
  359. 'fpn_depthwise': False,
  360. ## Head
  361. 'head': 'decoupled_head',
  362. 'head_act': 'silu',
  363. 'head_norm': 'BN',
  364. 'num_cls_head': 2,
  365. 'num_reg_head': 2,
  366. 'head_depthwise': False,
  367. # ---------------- Train config ----------------
  368. ## input
  369. 'multi_scale': [0.5, 1.25], # 320 -> 800
  370. 'trans_type': 'yolov5_l',
  371. # ---------------- Assignment config ----------------
  372. ## matcher
  373. 'matcher': {'center_sampling_radius': 2.5,
  374. 'topk_candicate': 10},
  375. # ---------------- Loss config ----------------
  376. ## loss weight
  377. 'loss_obj_weight': 1.0,
  378. 'loss_cls_weight': 1.0,
  379. 'loss_box_weight': 5.0,
  380. # ---------------- Train config ----------------
  381. 'trainer_type': 'rtcdet',
  382. },
  383. 'yolox_x_adamw':{
  384. # ---------------- Model config ----------------
  385. ## Backbone
  386. 'backbone': 'cspdarknet',
  387. 'bk_act': 'silu',
  388. 'bk_norm': 'BN',
  389. 'bk_dpw': False,
  390. 'width': 1.25,
  391. 'depth': 1.34,
  392. 'stride': [8, 16, 32], # P3, P4, P5
  393. 'max_stride': 32,
  394. ## FPN
  395. 'fpn': 'yolox_pafpn',
  396. 'fpn_reduce_layer': 'conv',
  397. 'fpn_downsample_layer': 'conv',
  398. 'fpn_core_block': 'cspblock',
  399. 'fpn_act': 'silu',
  400. 'fpn_norm': 'BN',
  401. 'fpn_depthwise': False,
  402. ## Head
  403. 'head': 'decoupled_head',
  404. 'head_act': 'silu',
  405. 'head_norm': 'BN',
  406. 'num_cls_head': 2,
  407. 'num_reg_head': 2,
  408. 'head_depthwise': False,
  409. # ---------------- Train config ----------------
  410. ## input
  411. 'multi_scale': [0.5, 1.25], # 320 -> 800
  412. 'trans_type': 'yolov5_x',
  413. # ---------------- Assignment config ----------------
  414. ## matcher
  415. 'matcher': {'center_sampling_radius': 2.5,
  416. 'topk_candicate': 10},
  417. # ---------------- Loss config ----------------
  418. ## loss weight
  419. 'loss_obj_weight': 1.0,
  420. 'loss_cls_weight': 1.0,
  421. 'loss_box_weight': 5.0,
  422. # ---------------- Train config ----------------
  423. 'trainer_type': 'rtcdet',
  424. },
  425. }