| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191 |
- import torch
- import torch.nn as nn
- try:
- from .rtcdet_basic import Conv, RTCBlock
- except:
- from rtcdet_basic import Conv, RTCBlock
- # Pretrained weights
- model_urls = {
- # ImageNet-1K pretrained weight
- "rtcnet_n": "https://github.com/yjh0410/image_classification_pytorch/releases/download/weight/elan_cspnet_nano.pth",
- "rtcnet_s": "https://github.com/yjh0410/image_classification_pytorch/releases/download/weight/elan_cspnet_small.pth",
- "rtcnet_m": None,
- "rtcnet_l": None,
- "rtcnet_x": None,
- # MIM-pretrained weights
- "mae_rtcnet_n": None,
- "mae_rtcnet_s": None,
- "mae_rtcnet_m": None,
- "mae_rtcnet_l": None,
- "mae_rtcnet_x": None,
- }
- # ---------------------------- Basic functions ----------------------------
- ## Real-time Convolutional Backbone
- class RTCBackbone(nn.Module):
- def __init__(self, width=1.0, depth=1.0, ratio=1.0, act_type='silu', norm_type='BN', depthwise=False):
- super(RTCBackbone, self).__init__()
- # ---------------- Basic parameters ----------------
- self.width_factor = width
- self.depth_factor = depth
- self.last_stage_factor = ratio
- self.feat_dims = [round(64 * width), round(128 * width), round(256 * width), round(512 * width), round(512 * width * ratio)]
- # ---------------- Network parameters ----------------
- ## P1/2
- self.layer_1 = Conv(3, self.feat_dims[0], k=3, p=1, s=2, act_type=act_type, norm_type=norm_type)
- ## P2/4
- self.layer_2 = nn.Sequential(
- Conv(self.feat_dims[0], self.feat_dims[1], k=3, p=1, s=2, act_type=act_type, norm_type=norm_type),
- RTCBlock(in_dim = self.feat_dims[1],
- out_dim = self.feat_dims[1],
- num_blocks = round(3*depth),
- shortcut = True,
- act_type = act_type,
- norm_type = norm_type,
- depthwise = depthwise)
- )
- ## P3/8
- self.layer_3 = nn.Sequential(
- Conv(self.feat_dims[1], self.feat_dims[2], k=3, p=1, s=2, act_type=act_type, norm_type=norm_type),
- RTCBlock(in_dim = self.feat_dims[2],
- out_dim = self.feat_dims[2],
- num_blocks = round(6*depth),
- shortcut = True,
- act_type = act_type,
- norm_type = norm_type,
- depthwise = depthwise)
- )
- ## P4/16
- self.layer_4 = nn.Sequential(
- Conv(self.feat_dims[2], self.feat_dims[3], k=3, p=1, s=2, act_type=act_type, norm_type=norm_type),
- RTCBlock(in_dim = self.feat_dims[3],
- out_dim = self.feat_dims[3],
- num_blocks = round(6*depth),
- shortcut = True,
- act_type = act_type,
- norm_type = norm_type,
- depthwise = depthwise)
- )
- ## P5/32
- self.layer_5 = nn.Sequential(
- Conv(self.feat_dims[3], self.feat_dims[4], k=3, p=1, s=2, act_type=act_type, norm_type=norm_type),
- RTCBlock(in_dim = self.feat_dims[4],
- out_dim = self.feat_dims[4],
- num_blocks = round(3*depth),
- shortcut = True,
- act_type = act_type,
- norm_type = norm_type,
- depthwise = depthwise)
- )
- def forward(self, x):
- c1 = self.layer_1(x)
- c2 = self.layer_2(c1)
- c3 = self.layer_3(c2)
- c4 = self.layer_4(c3)
- c5 = self.layer_5(c4)
- outputs = [c3, c4, c5]
- return outputs
- # ---------------------------- Functions ----------------------------
- ## Build Backbone network
- def build_backbone(cfg, pretrained=False):
- # build backbone model
- backbone = RTCBackbone(width=cfg['width'],
- depth=cfg['depth'],
- ratio=cfg['ratio'],
- act_type=cfg['bk_act'],
- norm_type=cfg['bk_norm'],
- depthwise=cfg['bk_depthwise']
- )
- feat_dims = backbone.feat_dims[-3:]
- # Model name
- width, depth, ratio = cfg['width'], cfg['depth'], cfg['ratio']
- model_name = "{}" if not cfg['bk_pretrained_mae'] else "mae_{}"
- if width == 0.25 and depth == 0.34 and ratio == 2.0:
- model_name = model_name.format("rtcnet_n")
- elif width == 0.375 and depth == 0.34 and ratio == 2.0:
- model_name = model_name.format("rtcnet_t")
- elif width == 0.50 and depth == 0.34 and ratio == 2.0:
- model_name = model_name.format("rtcnet_s")
- elif width == 0.75 and depth == 0.67 and ratio == 1.5:
- model_name = model_name.format("rtcnet_m")
- elif width == 1.0 and depth == 1.0 and ratio == 1.0:
- model_name = model_name.format("rtcnet_l")
- elif width == 1.25 and depth == 1.34 and ratio == 1.0:
- model_name = model_name.format("rtcnet_x")
- else:
- raise NotImplementedError("No such model size : width={}, depth={}, ratio={}. ".format(width, depth, ratio))
- # Load pretrained weight
- if pretrained:
- backbone = load_pretrained_weight(backbone, model_name)
-
- return backbone, feat_dims
- ## Load pretrained weight
- def load_pretrained_weight(model, model_name):
- # Load pretrained weight
- url = model_urls[model_name]
- if url is not None:
- print('Loading pretrained weight ...')
- checkpoint = torch.hub.load_state_dict_from_url(
- url=url, map_location="cpu", check_hash=True)
- # checkpoint state dict
- checkpoint_state_dict = checkpoint.pop("model")
- # model state dict
- model_state_dict = model.state_dict()
- # check
- for k in list(checkpoint_state_dict.keys()):
- if k in model_state_dict:
- shape_model = tuple(model_state_dict[k].shape)
- shape_checkpoint = tuple(checkpoint_state_dict[k].shape)
- if shape_model != shape_checkpoint:
- checkpoint_state_dict.pop(k)
- else:
- checkpoint_state_dict.pop(k)
- print(k)
- # load the weight
- model.load_state_dict(checkpoint_state_dict)
- else:
- print('No backbone pretrained for {}.'.format(model_name))
- return model
- if __name__ == '__main__':
- import time
- from thop import profile
- cfg = {
- 'bk_pretrained': True,
- 'bk_pretrained_mae': False,
- 'bk_act': 'silu',
- 'bk_norm': 'BN',
- 'bk_depthwise': False,
- 'width': 0.25,
- 'depth': 0.34,
- 'ratio': 2.0,
- }
- model, feats = build_backbone(cfg, pretrained=cfg['bk_pretrained'])
- x = torch.randn(1, 3, 640, 640)
- t0 = time.time()
- outputs = model(x)
- t1 = time.time()
- print('Time: ', t1 - t0)
- for out in outputs:
- print(out.shape)
- x = torch.randn(1, 3, 640, 640)
- print('==============================')
- flops, params = profile(model, inputs=(x, ), verbose=False)
- print('==============================')
- print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2))
- print('Params : {:.2f} M'.format(params / 1e6))
|