loss.py 7.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223
  1. import torch
  2. import torch.nn as nn
  3. import torch.nn.functional as F
  4. from .matcher import TaskAlignedAssigner
  5. from utils.box_ops import bbox_iou
  6. class Criterion(object):
  7. def __init__(self,
  8. cfg,
  9. device,
  10. num_classes=80):
  11. self.cfg = cfg
  12. self.device = device
  13. self.num_classes = num_classes
  14. # loss
  15. self.cls_lossf = ClassificationLoss(cfg)
  16. self.reg_lossf = RegressionLoss(num_classes)
  17. # loss weight
  18. self.loss_cls_weight = cfg['loss_cls_weight']
  19. self.loss_box_weight = cfg['loss_box_weight']
  20. # matcher
  21. matcher_config = cfg['matcher']
  22. self.matcher = TaskAlignedAssigner(
  23. topk=matcher_config['topk'],
  24. num_classes=num_classes,
  25. alpha=matcher_config['alpha'],
  26. beta=matcher_config['beta']
  27. )
  28. def __call__(self, outputs, targets, epoch=0):
  29. """
  30. outputs['pred_cls']: List(Tensor) [B, M, C]
  31. outputs['pred_regs']: List(Tensor) [B, M, 4*(reg_max+1)]
  32. outputs['pred_boxs']: List(Tensor) [B, M, 4]
  33. outputs['anchors']: List(Tensor) [M, 2]
  34. outputs['strides']: List(Int) [8, 16, 32] output stride
  35. outputs['stride_tensor']: List(Tensor) [M, 1]
  36. targets: (List) [dict{'boxes': [...],
  37. 'labels': [...],
  38. 'orig_size': ...}, ...]
  39. """
  40. bs = outputs['pred_cls'][0].shape[0]
  41. device = outputs['pred_cls'][0].device
  42. anchors = outputs['anchors']
  43. anchors = torch.cat(anchors, dim=0)
  44. num_anchors = anchors.shape[0]
  45. # preds: [B, M, C]
  46. cls_preds = torch.cat(outputs['pred_cls'], dim=1)
  47. box_preds = torch.cat(outputs['pred_box'], dim=1)
  48. # label assignment
  49. gt_label_targets = []
  50. gt_score_targets = []
  51. gt_bbox_targets = []
  52. fg_masks = []
  53. for batch_idx in range(bs):
  54. tgt_labels = targets[batch_idx]["labels"].to(device) # [Mp,]
  55. tgt_boxs = targets[batch_idx]["boxes"].to(device) # [Mp, 4]
  56. # check target
  57. if len(tgt_labels) == 0 or tgt_boxs.max().item() == 0.:
  58. # There is no valid gt
  59. gt_label = cls_preds.new_full((1, num_anchors), self.num_classes), #[1, M,]
  60. gt_score = cls_preds.new_zeros((1, num_anchors, self.num_classes)) #[1, M, C]
  61. gt_box = cls_preds.new_zeros((1, num_anchors, 4)) #[1, M, 4]
  62. fg_mask = cls_preds.new_zeros(1, num_anchors).bool() #[1, M,]
  63. else:
  64. tgt_labels = tgt_labels[None, :, None] # [1, Mp, 1]
  65. tgt_boxs = tgt_boxs[None] # [1, Mp, 4]
  66. (
  67. gt_label, #[1, M,]
  68. gt_box, #[1, M, 4]
  69. gt_score, #[1, M, C]
  70. fg_mask, #[1, M,]
  71. _
  72. ) = self.matcher(
  73. pd_scores = cls_preds[batch_idx:batch_idx+1].detach().sigmoid(),
  74. pd_bboxes = box_preds[batch_idx:batch_idx+1].detach(),
  75. anc_points = anchors,
  76. gt_labels = tgt_labels,
  77. gt_bboxes = tgt_boxs
  78. )
  79. gt_label_targets.append(gt_label)
  80. gt_score_targets.append(gt_score)
  81. gt_bbox_targets.append(gt_box)
  82. fg_masks.append(fg_mask)
  83. # List[B, 1, M, C] -> Tensor[B, M, C] -> Tensor[BM, C]
  84. fg_masks = torch.cat(fg_masks, 0).view(-1) # [BM,]
  85. gt_label_targets = torch.cat(gt_label_targets, 0).view(-1,) # [BM,]
  86. gt_score_targets = torch.cat(gt_score_targets, 0).view(-1, self.num_classes) # [BM, C]
  87. gt_bbox_targets = torch.cat(gt_bbox_targets, 0).view(-1, 4) # [BM, 4]
  88. num_fgs = max(gt_score_targets.sum(), 1)
  89. # cls loss
  90. cls_preds = cls_preds.view(-1, self.num_classes)
  91. loss_cls = self.cls_lossf(cls_preds, gt_label_targets, gt_score_targets)
  92. # reg loss
  93. bbox_weight = gt_score_targets[fg_masks].sum(-1, keepdim=True) # [BM, 1]
  94. box_preds = box_preds.view(-1, 4) # [BM, 4]
  95. loss_box = self.reg_lossf(box_preds, gt_bbox_targets, bbox_weight, fg_masks)
  96. # normalize loss
  97. loss_cls = loss_cls.sum() / num_fgs
  98. loss_box = loss_box.sum() / num_fgs
  99. # total loss
  100. losses = loss_cls * self.loss_cls_weight + \
  101. loss_box * self.loss_box_weight
  102. loss_dict = dict(
  103. loss_cls = loss_cls,
  104. loss_box = loss_box,
  105. losses = losses
  106. )
  107. return loss_dict
  108. class ClassificationLoss(nn.Module):
  109. def __init__(self, cfg):
  110. super(ClassificationLoss, self).__init__()
  111. self.cfg = cfg
  112. def quality_focal_loss(self, pred_cls, gt_label, gt_score, beta=2.0):
  113. # Quality FocalLoss
  114. """
  115. pred_cls: (torch.Tensor): [N, C]
  116. gt_label: (torch.Tensor): [N,]
  117. gt_score: (torch.Tensor): [N, C]
  118. """
  119. gt_label = gt_label.long()
  120. gt_score = gt_score[torch.arange(gt_label.shape[0]), gt_label]
  121. pred_sigmoid = pred_cls.sigmoid()
  122. scale_factor = pred_sigmoid
  123. zerolabel = scale_factor.new_zeros(pred_cls.shape)
  124. ce_loss = F.binary_cross_entropy_with_logits(
  125. pred_cls, zerolabel, reduction='none') * scale_factor.pow(beta)
  126. bg_class_ind = pred_cls.shape[-1]
  127. pos = ((gt_label >= 0) & (gt_label < bg_class_ind)).nonzero().squeeze(1)
  128. pos_label = gt_label[pos].long()
  129. scale_factor = gt_score[pos] - pred_sigmoid[pos, pos_label]
  130. ce_loss[pos, pos_label] = F.binary_cross_entropy_with_logits(
  131. pred_cls[pos, pos_label], gt_score[pos],
  132. reduction='none') * scale_factor.abs().pow(beta)
  133. return ce_loss
  134. def binary_cross_entropy(self, pred_logits, gt_score):
  135. loss = F.binary_cross_entropy_with_logits(
  136. pred_logits, gt_score, reduction='none')
  137. return loss
  138. def forward(self, pred_logits, gt_label, gt_score):
  139. if self.cfg['cls_loss'] == 'bce':
  140. loss = self.binary_cross_entropy(pred_logits, gt_score)
  141. elif self.cfg['cls_loss'] == 'qfl':
  142. loss = self.quality_focal_loss(pred_logits, gt_label, gt_score)
  143. return loss
  144. class RegressionLoss(nn.Module):
  145. def __init__(self, num_classes):
  146. super(RegressionLoss, self).__init__()
  147. self.num_classes = num_classes
  148. def forward(self, pred_boxs, gt_boxs, bbox_weight, fg_masks):
  149. """
  150. Input:
  151. pred_boxs: (Tensor) [BM, 4]
  152. gt_boxs: (Tensor) [BM, 4]
  153. bbox_weight: (Tensor) [BM, 1]
  154. fg_masks: (Tensor) [BM,]
  155. """
  156. # select positive samples mask
  157. num_pos = fg_masks.sum()
  158. if num_pos > 0:
  159. pred_boxs_pos = pred_boxs[fg_masks]
  160. gt_boxs_pos = gt_boxs[fg_masks]
  161. # iou loss
  162. ious = bbox_iou(pred_boxs_pos,
  163. gt_boxs_pos,
  164. xywh=False,
  165. CIoU=True)
  166. loss_iou = (1.0 - ious) * bbox_weight
  167. else:
  168. loss_iou = pred_boxs.sum() * 0.
  169. return loss_iou
  170. def build_criterion(cfg, device, num_classes):
  171. criterion = Criterion(
  172. cfg=cfg,
  173. device=device,
  174. num_classes=num_classes
  175. )
  176. return criterion
  177. if __name__ == "__main__":
  178. pass