| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223 |
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- from .matcher import TaskAlignedAssigner
- from utils.box_ops import bbox_iou
- class Criterion(object):
- def __init__(self,
- cfg,
- device,
- num_classes=80):
- self.cfg = cfg
- self.device = device
- self.num_classes = num_classes
- # loss
- self.cls_lossf = ClassificationLoss(cfg)
- self.reg_lossf = RegressionLoss(num_classes)
- # loss weight
- self.loss_cls_weight = cfg['loss_cls_weight']
- self.loss_box_weight = cfg['loss_box_weight']
- # matcher
- matcher_config = cfg['matcher']
- self.matcher = TaskAlignedAssigner(
- topk=matcher_config['topk'],
- num_classes=num_classes,
- alpha=matcher_config['alpha'],
- beta=matcher_config['beta']
- )
- def __call__(self, outputs, targets, epoch=0):
- """
- outputs['pred_cls']: List(Tensor) [B, M, C]
- outputs['pred_regs']: List(Tensor) [B, M, 4*(reg_max+1)]
- outputs['pred_boxs']: List(Tensor) [B, M, 4]
- outputs['anchors']: List(Tensor) [M, 2]
- outputs['strides']: List(Int) [8, 16, 32] output stride
- outputs['stride_tensor']: List(Tensor) [M, 1]
- targets: (List) [dict{'boxes': [...],
- 'labels': [...],
- 'orig_size': ...}, ...]
- """
- bs = outputs['pred_cls'][0].shape[0]
- device = outputs['pred_cls'][0].device
- anchors = outputs['anchors']
- anchors = torch.cat(anchors, dim=0)
- num_anchors = anchors.shape[0]
- # preds: [B, M, C]
- cls_preds = torch.cat(outputs['pred_cls'], dim=1)
- box_preds = torch.cat(outputs['pred_box'], dim=1)
-
- # label assignment
- gt_label_targets = []
- gt_score_targets = []
- gt_bbox_targets = []
- fg_masks = []
- for batch_idx in range(bs):
- tgt_labels = targets[batch_idx]["labels"].to(device) # [Mp,]
- tgt_boxs = targets[batch_idx]["boxes"].to(device) # [Mp, 4]
- # check target
- if len(tgt_labels) == 0 or tgt_boxs.max().item() == 0.:
- # There is no valid gt
- gt_label = cls_preds.new_full((1, num_anchors), self.num_classes), #[1, M,]
- gt_score = cls_preds.new_zeros((1, num_anchors, self.num_classes)) #[1, M, C]
- gt_box = cls_preds.new_zeros((1, num_anchors, 4)) #[1, M, 4]
- fg_mask = cls_preds.new_zeros(1, num_anchors).bool() #[1, M,]
- else:
- tgt_labels = tgt_labels[None, :, None] # [1, Mp, 1]
- tgt_boxs = tgt_boxs[None] # [1, Mp, 4]
- (
- gt_label, #[1, M,]
- gt_box, #[1, M, 4]
- gt_score, #[1, M, C]
- fg_mask, #[1, M,]
- _
- ) = self.matcher(
- pd_scores = cls_preds[batch_idx:batch_idx+1].detach().sigmoid(),
- pd_bboxes = box_preds[batch_idx:batch_idx+1].detach(),
- anc_points = anchors,
- gt_labels = tgt_labels,
- gt_bboxes = tgt_boxs
- )
- gt_label_targets.append(gt_label)
- gt_score_targets.append(gt_score)
- gt_bbox_targets.append(gt_box)
- fg_masks.append(fg_mask)
- # List[B, 1, M, C] -> Tensor[B, M, C] -> Tensor[BM, C]
- fg_masks = torch.cat(fg_masks, 0).view(-1) # [BM,]
- gt_label_targets = torch.cat(gt_label_targets, 0).view(-1,) # [BM,]
- gt_score_targets = torch.cat(gt_score_targets, 0).view(-1, self.num_classes) # [BM, C]
- gt_bbox_targets = torch.cat(gt_bbox_targets, 0).view(-1, 4) # [BM, 4]
- num_fgs = max(gt_score_targets.sum(), 1)
-
- # cls loss
- cls_preds = cls_preds.view(-1, self.num_classes)
- loss_cls = self.cls_lossf(cls_preds, gt_label_targets, gt_score_targets)
- # reg loss
- bbox_weight = gt_score_targets[fg_masks].sum(-1, keepdim=True) # [BM, 1]
- box_preds = box_preds.view(-1, 4) # [BM, 4]
- loss_box = self.reg_lossf(box_preds, gt_bbox_targets, bbox_weight, fg_masks)
-
- # normalize loss
- loss_cls = loss_cls.sum() / num_fgs
- loss_box = loss_box.sum() / num_fgs
- # total loss
- losses = loss_cls * self.loss_cls_weight + \
- loss_box * self.loss_box_weight
-
- loss_dict = dict(
- loss_cls = loss_cls,
- loss_box = loss_box,
- losses = losses
- )
- return loss_dict
-
- class ClassificationLoss(nn.Module):
- def __init__(self, cfg):
- super(ClassificationLoss, self).__init__()
- self.cfg = cfg
- def quality_focal_loss(self, pred_cls, gt_label, gt_score, beta=2.0):
- # Quality FocalLoss
- """
- pred_cls: (torch.Tensor): [N, C]
- gt_label: (torch.Tensor): [N,]
- gt_score: (torch.Tensor): [N, C]
- """
- gt_label = gt_label.long()
- gt_score = gt_score[torch.arange(gt_label.shape[0]), gt_label]
- pred_sigmoid = pred_cls.sigmoid()
- scale_factor = pred_sigmoid
- zerolabel = scale_factor.new_zeros(pred_cls.shape)
- ce_loss = F.binary_cross_entropy_with_logits(
- pred_cls, zerolabel, reduction='none') * scale_factor.pow(beta)
-
- bg_class_ind = pred_cls.shape[-1]
- pos = ((gt_label >= 0) & (gt_label < bg_class_ind)).nonzero().squeeze(1)
- pos_label = gt_label[pos].long()
- scale_factor = gt_score[pos] - pred_sigmoid[pos, pos_label]
- ce_loss[pos, pos_label] = F.binary_cross_entropy_with_logits(
- pred_cls[pos, pos_label], gt_score[pos],
- reduction='none') * scale_factor.abs().pow(beta)
- return ce_loss
-
- def binary_cross_entropy(self, pred_logits, gt_score):
- loss = F.binary_cross_entropy_with_logits(
- pred_logits, gt_score, reduction='none')
- return loss
- def forward(self, pred_logits, gt_label, gt_score):
- if self.cfg['cls_loss'] == 'bce':
- loss = self.binary_cross_entropy(pred_logits, gt_score)
- elif self.cfg['cls_loss'] == 'qfl':
- loss = self.quality_focal_loss(pred_logits, gt_label, gt_score)
-
- return loss
- class RegressionLoss(nn.Module):
- def __init__(self, num_classes):
- super(RegressionLoss, self).__init__()
- self.num_classes = num_classes
- def forward(self, pred_boxs, gt_boxs, bbox_weight, fg_masks):
- """
- Input:
- pred_boxs: (Tensor) [BM, 4]
- gt_boxs: (Tensor) [BM, 4]
- bbox_weight: (Tensor) [BM, 1]
- fg_masks: (Tensor) [BM,]
- """
- # select positive samples mask
- num_pos = fg_masks.sum()
- if num_pos > 0:
- pred_boxs_pos = pred_boxs[fg_masks]
- gt_boxs_pos = gt_boxs[fg_masks]
- # iou loss
- ious = bbox_iou(pred_boxs_pos,
- gt_boxs_pos,
- xywh=False,
- CIoU=True)
- loss_iou = (1.0 - ious) * bbox_weight
-
- else:
- loss_iou = pred_boxs.sum() * 0.
- return loss_iou
- def build_criterion(cfg, device, num_classes):
- criterion = Criterion(
- cfg=cfg,
- device=device,
- num_classes=num_classes
- )
- return criterion
- if __name__ == "__main__":
- pass
|