yolov5.py 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280
  1. import numpy as np
  2. import torch
  3. import torch.nn as nn
  4. from .yolov5_backbone import build_backbone
  5. from .yolov5_pafpn import build_fpn
  6. from .yolov5_head import build_head
  7. from utils.misc import multiclass_nms
  8. class YOLOv5(nn.Module):
  9. def __init__(self,
  10. cfg,
  11. device,
  12. num_classes = 20,
  13. conf_thresh = 0.01,
  14. nms_thresh = 0.5,
  15. topk = 1000,
  16. trainable = False,
  17. deploy = False,
  18. no_multi_labels = False,
  19. nms_class_agnostic = False):
  20. super(YOLOv5, self).__init__()
  21. # ---------------------- Basic Parameters ----------------------
  22. self.cfg = cfg
  23. self.device = device
  24. self.stride = cfg['stride']
  25. self.num_classes = num_classes
  26. self.trainable = trainable
  27. self.conf_thresh = conf_thresh
  28. self.nms_thresh = nms_thresh
  29. self.topk_candidates = topk
  30. self.no_multi_labels = no_multi_labels
  31. self.nms_class_agnostic = nms_class_agnostic
  32. self.deploy = deploy
  33. # ------------------- Anchor box -------------------
  34. self.num_levels = 3
  35. self.num_anchors = len(cfg['anchor_size']) // self.num_levels
  36. self.anchor_size = torch.as_tensor(
  37. cfg['anchor_size']
  38. ).float().view(self.num_levels, self.num_anchors, 2) # [S, A, 2]
  39. # ------------------- Network Structure -------------------
  40. ## Backbone
  41. self.backbone, feats_dim = build_backbone(cfg)
  42. ## FPN
  43. self.fpn = build_fpn(cfg=cfg, in_dims=feats_dim, out_dim=round(256*cfg['width']))
  44. self.head_dim = self.fpn.out_dim
  45. ## Head
  46. self.non_shared_heads = nn.ModuleList(
  47. [build_head(cfg, head_dim, head_dim, num_classes)
  48. for head_dim in self.head_dim
  49. ])
  50. ## Pred
  51. self.obj_preds = nn.ModuleList(
  52. [nn.Conv2d(head.reg_out_dim, 1 * self.num_anchors, kernel_size=1)
  53. for head in self.non_shared_heads
  54. ])
  55. self.cls_preds = nn.ModuleList(
  56. [nn.Conv2d(head.cls_out_dim, self.num_classes * self.num_anchors, kernel_size=1)
  57. for head in self.non_shared_heads
  58. ])
  59. self.reg_preds = nn.ModuleList(
  60. [nn.Conv2d(head.reg_out_dim, 4 * self.num_anchors, kernel_size=1)
  61. for head in self.non_shared_heads
  62. ])
  63. # ---------------------- Basic Functions ----------------------
  64. ## generate anchor points
  65. def generate_anchors(self, level, fmp_size):
  66. fmp_h, fmp_w = fmp_size
  67. # [KA, 2]
  68. anchor_size = self.anchor_size[level]
  69. # generate grid cells
  70. anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
  71. anchor_xy = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2)
  72. # [HW, 2] -> [HW, KA, 2] -> [M, 2]
  73. anchor_xy = anchor_xy.unsqueeze(1).repeat(1, self.num_anchors, 1)
  74. anchor_xy = anchor_xy.view(-1, 2).to(self.device)
  75. # [KA, 2] -> [1, KA, 2] -> [HW, KA, 2] -> [M, 2]
  76. anchor_wh = anchor_size.unsqueeze(0).repeat(fmp_h*fmp_w, 1, 1)
  77. anchor_wh = anchor_wh.view(-1, 2).to(self.device)
  78. anchors = torch.cat([anchor_xy, anchor_wh], dim=-1)
  79. return anchors
  80. ## post-process
  81. def post_process(self, cls_preds, box_preds, obj_preds=None):
  82. """
  83. Input:
  84. cls_preds: List[np.array] -> [[M, C], ...]
  85. box_preds: List[np.array] -> [[M, 4], ...]
  86. obj_preds: List[np.array] -> [[M, 1], ...] or None
  87. Output:
  88. bboxes: np.array -> [N, 4]
  89. scores: np.array -> [N,]
  90. labels: np.array -> [N,]
  91. """
  92. assert len(cls_preds) == self.num_levels
  93. all_scores = []
  94. all_labels = []
  95. all_bboxes = []
  96. for level in range(self.num_levels):
  97. cls_pred_i = cls_preds[level]
  98. box_pred_i = box_preds[level]
  99. num_topk = min(self.topk_candidates, box_pred_i.shape[0])
  100. # filter out by objectness
  101. obj_preds_i = obj_preds[level]
  102. keep_idxs = obj_preds_i[..., 0] > self.conf_thresh
  103. cls_pred_i = obj_preds_i[keep_idxs] * cls_pred_i[keep_idxs]
  104. box_pred_i = box_pred_i[keep_idxs]
  105. if self.no_multi_labels:
  106. # [M,]
  107. scores_i, labels_i = np.max(cls_pred_i, axis=1), np.argmax(cls_pred_i, axis=1)
  108. # topk candidates
  109. topk_idxs = np.argsort(-scores_i)
  110. topk_idxs = topk_idxs[:num_topk]
  111. scores_i = scores_i[topk_idxs]
  112. labels_i = labels_i[topk_idxs]
  113. bboxes_i = box_pred_i[topk_idxs]
  114. else:
  115. # [M, C] -> [MC,]
  116. scores_i = cls_pred_i.flatten()
  117. # topk candidates
  118. predicted_prob, topk_idxs = np.sort(scores_i)[::-1], np.argsort(-scores_i)
  119. scores_i = predicted_prob[:num_topk]
  120. topk_idxs = topk_idxs[:num_topk]
  121. anchor_idxs = topk_idxs // self.num_classes
  122. bboxes_i = box_pred_i[anchor_idxs]
  123. labels_i = topk_idxs % self.num_classes
  124. all_scores.append(scores_i)
  125. all_labels.append(labels_i)
  126. all_bboxes.append(bboxes_i)
  127. scores = np.concatenate(all_scores, axis=0)
  128. labels = np.concatenate(all_labels, axis=0)
  129. bboxes = np.concatenate(all_bboxes, axis=0)
  130. # nms
  131. scores, labels, bboxes = multiclass_nms(
  132. scores, labels, bboxes, self.nms_thresh, self.num_classes, self.nms_class_agnostic)
  133. return bboxes, scores, labels
  134. # ---------------------- Main Process for Inference ----------------------
  135. @torch.no_grad()
  136. def inference_single_image(self, x):
  137. # backbone
  138. pyramid_feats = self.backbone(x)
  139. # fpn
  140. pyramid_feats = self.fpn(pyramid_feats)
  141. # non-shared heads
  142. all_anchors = []
  143. all_obj_preds = []
  144. all_cls_preds = []
  145. all_box_preds = []
  146. for level, (feat, head) in enumerate(zip(pyramid_feats, self.non_shared_heads)):
  147. cls_feat, reg_feat = head(feat)
  148. # [1, C, H, W]
  149. obj_pred = self.obj_preds[level](reg_feat)
  150. cls_pred = self.cls_preds[level](cls_feat)
  151. reg_pred = self.reg_preds[level](reg_feat)
  152. # anchors: [M, 4]
  153. fmp_size = cls_pred.shape[-2:]
  154. anchors = self.generate_anchors(level, fmp_size)
  155. # [1, C, H, W] -> [H, W, C] -> [M, C]
  156. obj_pred = obj_pred[0].permute(1, 2, 0).contiguous().view(-1, 1)
  157. cls_pred = cls_pred[0].permute(1, 2, 0).contiguous().view(-1, self.num_classes)
  158. reg_pred = reg_pred[0].permute(1, 2, 0).contiguous().view(-1, 4)
  159. # decode bbox
  160. ctr_pred = (torch.sigmoid(reg_pred[..., :2]) * 2.0 - 0.5 + anchors[..., :2]) * self.stride[level]
  161. wh_pred = torch.exp(reg_pred[..., 2:]) * anchors[..., 2:]
  162. pred_x1y1 = ctr_pred - wh_pred * 0.5
  163. pred_x2y2 = ctr_pred + wh_pred * 0.5
  164. box_pred = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
  165. all_obj_preds.append(obj_pred)
  166. all_cls_preds.append(cls_pred)
  167. all_box_preds.append(box_pred)
  168. all_anchors.append(anchors)
  169. if self.deploy:
  170. obj_preds = torch.cat(all_obj_preds, dim=0)
  171. cls_preds = torch.cat(all_cls_preds, dim=0)
  172. box_preds = torch.cat(all_box_preds, dim=0)
  173. scores = torch.sqrt(obj_preds.sigmoid() * cls_preds.sigmoid())
  174. bboxes = box_preds
  175. # [n_anchors_all, 4 + C]
  176. outputs = torch.cat([bboxes, scores], dim=-1)
  177. return outputs
  178. else:
  179. # post process
  180. obj_preds = [obj_pred_i.sigmoid().cpu().numpy() for obj_pred_i in all_obj_preds]
  181. cls_preds = [cls_pred_i.sigmoid().cpu().numpy() for cls_pred_i in all_cls_preds]
  182. box_preds = [box_pred_i.cpu().numpy() for box_pred_i in all_box_preds]
  183. bboxes, scores, labels = self.post_process(cls_preds, box_preds, obj_preds)
  184. return bboxes, scores, labels
  185. # ---------------------- Main Process for Training ----------------------
  186. def forward(self, x):
  187. if not self.trainable:
  188. return self.inference_single_image(x)
  189. else:
  190. # backbone
  191. pyramid_feats = self.backbone(x)
  192. # fpn
  193. pyramid_feats = self.fpn(pyramid_feats)
  194. # non-shared heads
  195. all_fmp_sizes = []
  196. all_obj_preds = []
  197. all_cls_preds = []
  198. all_box_preds = []
  199. for level, (feat, head) in enumerate(zip(pyramid_feats, self.non_shared_heads)):
  200. cls_feat, reg_feat = head(feat)
  201. # [B, C, H, W]
  202. obj_pred = self.obj_preds[level](reg_feat)
  203. cls_pred = self.cls_preds[level](cls_feat)
  204. reg_pred = self.reg_preds[level](reg_feat)
  205. B, _, H, W = cls_pred.size()
  206. fmp_size = [H, W]
  207. # generate anchor boxes: [M, 4]
  208. anchors = self.generate_anchors(level, fmp_size)
  209. # [B, C, H, W] -> [B, H, W, C] -> [B, M, C]
  210. obj_pred = obj_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 1)
  211. cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, self.num_classes)
  212. reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 4)
  213. # decode bbox
  214. ctr_pred = (torch.sigmoid(reg_pred[..., :2]) * 2.0 - 0.5 + anchors[..., :2]) * self.stride[level]
  215. wh_pred = torch.exp(reg_pred[..., 2:]) * anchors[..., 2:]
  216. pred_x1y1 = ctr_pred - wh_pred * 0.5
  217. pred_x2y2 = ctr_pred + wh_pred * 0.5
  218. box_pred = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
  219. all_obj_preds.append(obj_pred)
  220. all_cls_preds.append(cls_pred)
  221. all_box_preds.append(box_pred)
  222. all_fmp_sizes.append(fmp_size)
  223. # output dict
  224. outputs = {"pred_obj": all_obj_preds, # List [B, M, 1]
  225. "pred_cls": all_cls_preds, # List [B, M, C]
  226. "pred_box": all_box_preds, # List [B, M, 4]
  227. 'fmp_sizes': all_fmp_sizes, # List
  228. 'strides': self.stride, # List
  229. }
  230. return outputs