| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118 |
- import os
- try:
- from .voc import VOCDataset
- from .coco import COCODataset
- from .crowdhuman import CrowdHumanDataset
- from .ourdataset import OurDataset
- from .data_augment.ssd_augment import SSDAugmentation, SSDBaseTransform
- from .data_augment.yolov5_augment import YOLOv5Augmentation, YOLOv5BaseTransform
- except:
- from voc import VOCDataset
- from coco import COCODataset
- from crowdhuman import CrowdHumanDataset
- from ourdataset import OurDataset
- from data_augment.ssd_augment import SSDAugmentation, SSDBaseTransform
- from data_augment.yolov5_augment import YOLOv5Augmentation, YOLOv5BaseTransform
- # ------------------------------ Dataset ------------------------------
- def build_dataset(args, data_cfg, trans_config, transform, is_train=False):
- # ------------------------- Basic parameters -------------------------
- data_dir = os.path.join(args.root, data_cfg['data_name'])
- num_classes = data_cfg['num_classes']
- class_names = data_cfg['class_names']
- class_indexs = data_cfg['class_indexs']
- dataset_info = {
- 'num_classes': num_classes,
- 'class_names': class_names,
- 'class_indexs': class_indexs
- }
- # ------------------------- Build dataset -------------------------
- ## VOC dataset
- if args.dataset == 'voc':
- image_sets = [('2007', 'trainval'), ('2012', 'trainval')] if is_train else [('2007', 'test')]
- dataset = VOCDataset(img_size = args.img_size,
- data_dir = data_dir,
- image_sets = image_sets,
- transform = transform,
- trans_config = trans_config,
- is_train = is_train,
- load_cache = args.load_cache
- )
- ## COCO dataset
- elif args.dataset == 'coco':
- image_set = 'train2017' if is_train else 'val2017'
- dataset = COCODataset(img_size = args.img_size,
- data_dir = data_dir,
- image_set = image_set,
- transform = transform,
- trans_config = trans_config,
- is_train = is_train,
- load_cache = args.load_cache
- )
- ## CrowdHuman dataset
- elif args.dataset == 'crowdhuman':
- image_set = 'train' if is_train else 'val'
- dataset = CrowdHumanDataset(img_size = args.img_size,
- data_dir = data_dir,
- image_set = image_set,
- transform = transform,
- trans_config = trans_config,
- is_train = is_train,
- )
- ## Custom dataset
- elif args.dataset == 'ourdataset':
- image_set = 'train' if is_train else 'val'
- dataset = OurDataset(data_dir = data_dir,
- img_size = args.img_size,
- image_set = image_set,
- transform = transform,
- trans_config = trans_config,
- is_train = is_train,
- load_cache = args.load_cache
- )
- return dataset, dataset_info
- # ------------------------------ Transform ------------------------------
- def build_transform(args, trans_config, max_stride=32, is_train=False):
- # Modify trans_config
- if is_train:
- ## mosaic prob.
- if args.mosaic is not None:
- trans_config['mosaic_prob']=args.mosaic if is_train else 0.0
- else:
- trans_config['mosaic_prob']=trans_config['mosaic_prob'] if is_train else 0.0
- ## mixup prob.
- if args.mixup is not None:
- trans_config['mixup_prob']=args.mixup if is_train else 0.0
- else:
- trans_config['mixup_prob']=trans_config['mixup_prob'] if is_train else 0.0
- # Transform
- if trans_config['aug_type'] == 'ssd':
- if is_train:
- transform = SSDAugmentation(img_size=args.img_size,)
- else:
- transform = SSDBaseTransform(img_size=args.img_size,)
- trans_config['mosaic_prob'] = 0.0
- trans_config['mixup_prob'] = 0.0
- elif trans_config['aug_type'] == 'yolov5':
- if is_train:
- transform = YOLOv5Augmentation(
- img_size=args.img_size,
- trans_config=trans_config,
- use_ablu=trans_config['use_ablu']
- )
- else:
- transform = YOLOv5BaseTransform(
- img_size=args.img_size,
- max_stride=max_stride
- )
- return transform, trans_config
|