yolov5_config.py 8.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274
  1. # YOLOv5 Config
  2. yolov5_cfg = {
  3. 'yolov5_n':{
  4. # ---------------- Model config ----------------
  5. ## Backbone
  6. 'backbone': 'cspdarknet',
  7. 'bk_act': 'silu',
  8. 'bk_norm': 'BN',
  9. 'bk_dpw': False,
  10. 'width': 0.25,
  11. 'depth': 0.34,
  12. 'stride': [8, 16, 32], # P3, P4, P5
  13. 'max_stride': 32,
  14. ## FPN
  15. 'fpn': 'yolov5_pafpn',
  16. 'fpn_reduce_layer': 'Conv',
  17. 'fpn_downsample_layer': 'Conv',
  18. 'fpn_core_block': 'CSPBlock',
  19. 'fpn_act': 'silu',
  20. 'fpn_norm': 'BN',
  21. 'fpn_depthwise': False,
  22. ## Head
  23. 'head': 'decoupled_head',
  24. 'head_act': 'silu',
  25. 'head_norm': 'BN',
  26. 'num_cls_head': 2,
  27. 'num_reg_head': 2,
  28. 'head_depthwise': False,
  29. 'anchor_size': [[10, 13], [16, 30], [33, 23], # P3
  30. [30, 61], [62, 45], [59, 119], # P4
  31. [116, 90], [156, 198], [373, 326]], # P5
  32. # ---------------- Train config ----------------
  33. ## input
  34. 'multi_scale': [0.5, 1.25], # 320 -> 800
  35. 'trans_type': 'yolov5_nano',
  36. # ---------------- Assignment config ----------------
  37. ## matcher
  38. 'anchor_thresh': 4.0,
  39. # ---------------- Loss config ----------------
  40. ## loss weight
  41. 'loss_obj_weight': 1.0,
  42. 'loss_cls_weight': 1.0,
  43. 'loss_box_weight': 5.0,
  44. # ---------------- Train config ----------------
  45. 'trainer_type': 'rtcdet',
  46. },
  47. 'yolov5_t':{
  48. # ---------------- Model config ----------------
  49. ## Backbone
  50. 'backbone': 'cspdarknet',
  51. 'bk_act': 'silu',
  52. 'bk_norm': 'BN',
  53. 'bk_dpw': False,
  54. 'width': 0.375,
  55. 'depth': 0.34,
  56. 'stride': [8, 16, 32], # P3, P4, P5
  57. 'max_stride': 32,
  58. ## FPN
  59. 'fpn': 'yolov5_pafpn',
  60. 'fpn_reduce_layer': 'Conv',
  61. 'fpn_downsample_layer': 'Conv',
  62. 'fpn_core_block': 'CSPBlock',
  63. 'fpn_act': 'silu',
  64. 'fpn_norm': 'BN',
  65. 'fpn_depthwise': False,
  66. ## Head
  67. 'head': 'decoupled_head',
  68. 'head_act': 'silu',
  69. 'head_norm': 'BN',
  70. 'num_cls_head': 2,
  71. 'num_reg_head': 2,
  72. 'head_depthwise': False,
  73. 'anchor_size': [[10, 13], [16, 30], [33, 23], # P3
  74. [30, 61], [62, 45], [59, 119], # P4
  75. [116, 90], [156, 198], [373, 326]], # P5
  76. # ---------------- Train config ----------------
  77. ## input
  78. 'multi_scale': [0.5, 1.25], # 320 -> 800
  79. 'trans_type': 'yolov5_nano',
  80. # ---------------- Assignment config ----------------
  81. ## matcher
  82. 'anchor_thresh': 4.0,
  83. # ---------------- Loss config ----------------
  84. ## loss weight
  85. 'loss_obj_weight': 1.0,
  86. 'loss_cls_weight': 1.0,
  87. 'loss_box_weight': 5.0,
  88. # ---------------- Train config ----------------
  89. 'trainer_type': 'rtcdet',
  90. },
  91. 'yolov5_s':{
  92. # ---------------- Model config ----------------
  93. ## Backbone
  94. 'backbone': 'cspdarknet',
  95. 'bk_act': 'silu',
  96. 'bk_norm': 'BN',
  97. 'bk_dpw': False,
  98. 'width': 0.50,
  99. 'depth': 0.34,
  100. 'stride': [8, 16, 32], # P3, P4, P5
  101. 'max_stride': 32,
  102. ## FPN
  103. 'fpn': 'yolov5_pafpn',
  104. 'fpn_reduce_layer': 'Conv',
  105. 'fpn_downsample_layer': 'Conv',
  106. 'fpn_core_block': 'CSPBlock',
  107. 'fpn_act': 'silu',
  108. 'fpn_norm': 'BN',
  109. 'fpn_depthwise': False,
  110. ## Head
  111. 'head': 'decoupled_head',
  112. 'head_act': 'silu',
  113. 'head_norm': 'BN',
  114. 'num_cls_head': 2,
  115. 'num_reg_head': 2,
  116. 'head_depthwise': False,
  117. 'anchor_size': [[10, 13], [16, 30], [33, 23], # P3
  118. [30, 61], [62, 45], [59, 119], # P4
  119. [116, 90], [156, 198], [373, 326]], # P5
  120. # ---------------- Train config ----------------
  121. ## input
  122. 'multi_scale': [0.5, 1.25], # 320 -> 800
  123. 'trans_type': 'yolov5_small',
  124. # ---------------- Assignment config ----------------
  125. ## matcher
  126. 'anchor_thresh': 4.0,
  127. # ---------------- Loss config ----------------
  128. ## loss weight
  129. 'loss_obj_weight': 1.0,
  130. 'loss_cls_weight': 1.0,
  131. 'loss_box_weight': 5.0,
  132. # ---------------- Train config ----------------
  133. 'trainer_type': 'rtcdet',
  134. },
  135. 'yolov5_m':{
  136. # ---------------- Model config ----------------
  137. ## Backbone
  138. 'backbone': 'cspdarknet',
  139. 'bk_act': 'silu',
  140. 'bk_norm': 'BN',
  141. 'bk_dpw': False,
  142. 'width': 0.75,
  143. 'depth': 0.67,
  144. 'stride': [8, 16, 32], # P3, P4, P5
  145. 'max_stride': 32,
  146. ## FPN
  147. 'fpn': 'yolov5_pafpn',
  148. 'fpn_reduce_layer': 'Conv',
  149. 'fpn_downsample_layer': 'Conv',
  150. 'fpn_core_block': 'CSPBlock',
  151. 'fpn_act': 'silu',
  152. 'fpn_norm': 'BN',
  153. 'fpn_depthwise': False,
  154. ## Head
  155. 'head': 'decoupled_head',
  156. 'head_act': 'silu',
  157. 'head_norm': 'BN',
  158. 'num_cls_head': 2,
  159. 'num_reg_head': 2,
  160. 'head_depthwise': False,
  161. 'anchor_size': [[10, 13], [16, 30], [33, 23], # P3
  162. [30, 61], [62, 45], [59, 119], # P4
  163. [116, 90], [156, 198], [373, 326]], # P5
  164. # ---------------- Train config ----------------
  165. ## input
  166. 'multi_scale': [0.5, 1.25], # 320 -> 800
  167. 'trans_type': 'yolov5_medium',
  168. # ---------------- Assignment config ----------------
  169. ## matcher
  170. 'anchor_thresh': 4.0,
  171. # ---------------- Loss config ----------------
  172. ## loss weight
  173. 'loss_obj_weight': 1.0,
  174. 'loss_cls_weight': 1.0,
  175. 'loss_box_weight': 5.0,
  176. # ---------------- Train config ----------------
  177. 'trainer_type': 'rtcdet',
  178. },
  179. 'yolov5_l':{
  180. # ---------------- Model config ----------------
  181. ## Backbone
  182. 'backbone': 'cspdarknet',
  183. 'bk_act': 'silu',
  184. 'bk_norm': 'BN',
  185. 'bk_dpw': False,
  186. 'width': 1.0,
  187. 'depth': 1.0,
  188. 'stride': [8, 16, 32], # P3, P4, P5
  189. 'max_stride': 32,
  190. ## FPN
  191. 'fpn': 'yolov5_pafpn',
  192. 'fpn_reduce_layer': 'Conv',
  193. 'fpn_downsample_layer': 'Conv',
  194. 'fpn_core_block': 'CSPBlock',
  195. 'fpn_act': 'silu',
  196. 'fpn_norm': 'BN',
  197. 'fpn_depthwise': False,
  198. ## Head
  199. 'head': 'decoupled_head',
  200. 'head_act': 'silu',
  201. 'head_norm': 'BN',
  202. 'num_cls_head': 2,
  203. 'num_reg_head': 2,
  204. 'head_depthwise': False,
  205. 'anchor_size': [[10, 13], [16, 30], [33, 23], # P3
  206. [30, 61], [62, 45], [59, 119], # P4
  207. [116, 90], [156, 198], [373, 326]], # P5
  208. # ---------------- Train config ----------------
  209. ## input
  210. 'multi_scale': [0.5, 1.25], # 320 -> 800
  211. 'trans_type': 'yolov5_large',
  212. # ---------------- Assignment config ----------------
  213. ## matcher
  214. 'anchor_thresh': 4.0,
  215. # ---------------- Loss config ----------------
  216. ## loss weight
  217. 'loss_obj_weight': 1.0,
  218. 'loss_cls_weight': 1.0,
  219. 'loss_box_weight': 5.0,
  220. # ---------------- Train config ----------------
  221. 'trainer_type': 'rtcdet',
  222. },
  223. 'yolov5_x':{
  224. # ---------------- Model config ----------------
  225. ## Backbone
  226. 'backbone': 'cspdarknet',
  227. 'bk_act': 'silu',
  228. 'bk_norm': 'BN',
  229. 'bk_dpw': False,
  230. 'width': 1.25,
  231. 'depth': 1.34,
  232. 'stride': [8, 16, 32], # P3, P4, P5
  233. 'max_stride': 32,
  234. ## FPN
  235. 'fpn': 'yolov5_pafpn',
  236. 'fpn_reduce_layer': 'Conv',
  237. 'fpn_downsample_layer': 'Conv',
  238. 'fpn_core_block': 'CSPBlock',
  239. 'fpn_act': 'silu',
  240. 'fpn_norm': 'BN',
  241. 'fpn_depthwise': False,
  242. ## Head
  243. 'head': 'decoupled_head',
  244. 'head_act': 'silu',
  245. 'head_norm': 'BN',
  246. 'num_cls_head': 2,
  247. 'num_reg_head': 2,
  248. 'head_depthwise': False,
  249. 'anchor_size': [[10, 13], [16, 30], [33, 23], # P3
  250. [30, 61], [62, 45], [59, 119], # P4
  251. [116, 90], [156, 198], [373, 326]], # P5
  252. # ---------------- Train config ----------------
  253. ## input
  254. 'multi_scale': [0.5, 1.25], # 320 -> 800
  255. 'trans_type': 'yolov5_huge',
  256. # ---------------- Assignment config ----------------
  257. ## matcher
  258. 'anchor_thresh': 4.0,
  259. # ---------------- Loss config ----------------
  260. ## loss weight
  261. 'loss_obj_weight': 1.0,
  262. 'loss_cls_weight': 1.0,
  263. 'loss_box_weight': 5.0,
  264. # ---------------- Train config ----------------
  265. 'trainer_type': 'rtcdet',
  266. },
  267. }