yolov2.py 9.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267
  1. import torch
  2. import torch.nn as nn
  3. from utils.misc import multiclass_nms
  4. from .yolov2_backbone import build_backbone
  5. from .yolov2_neck import build_neck
  6. from .yolov2_head import build_head
  7. # YOLOv2
  8. class YOLOv2(nn.Module):
  9. def __init__(self,
  10. cfg,
  11. device,
  12. num_classes=20,
  13. conf_thresh=0.01,
  14. nms_thresh=0.5,
  15. topk=100,
  16. trainable=False,
  17. deploy=False,
  18. no_multi_labels=False,
  19. nms_class_agnostic=False):
  20. super(YOLOv2, self).__init__()
  21. # ------------------- Basic parameters -------------------
  22. self.cfg = cfg # 模型配置文件
  23. self.device = device # cuda或者是cpu
  24. self.num_classes = num_classes # 类别的数量
  25. self.trainable = trainable # 训练的标记
  26. self.conf_thresh = conf_thresh # 得分阈值
  27. self.nms_thresh = nms_thresh # NMS阈值
  28. self.topk_candidates = topk # topk
  29. self.stride = 32 # 网络的最大步长
  30. self.deploy = deploy
  31. self.no_multi_labels = no_multi_labels
  32. self.nms_class_agnostic = nms_class_agnostic
  33. # ------------------- Anchor box -------------------
  34. self.anchor_size = torch.as_tensor(cfg['anchor_size']).float().view(-1, 2) # [A, 2]
  35. self.num_anchors = self.anchor_size.shape[0]
  36. # ------------------- Network Structure -------------------
  37. ## 主干网络
  38. self.backbone, feat_dim = build_backbone(
  39. cfg['backbone'], trainable&cfg['pretrained'])
  40. ## 颈部网络
  41. self.neck = build_neck(cfg, feat_dim, out_dim=512)
  42. head_dim = self.neck.out_dim
  43. ## 检测头
  44. self.head = build_head(cfg, head_dim, head_dim, num_classes)
  45. ## 预测层
  46. self.obj_pred = nn.Conv2d(head_dim, 1*self.num_anchors, kernel_size=1)
  47. self.cls_pred = nn.Conv2d(head_dim, num_classes*self.num_anchors, kernel_size=1)
  48. self.reg_pred = nn.Conv2d(head_dim, 4*self.num_anchors, kernel_size=1)
  49. if self.trainable:
  50. self.init_bias()
  51. def init_bias(self):
  52. # init bias
  53. init_prob = 0.01
  54. bias_value = -torch.log(torch.tensor((1. - init_prob) / init_prob))
  55. nn.init.constant_(self.obj_pred.bias, bias_value)
  56. nn.init.constant_(self.cls_pred.bias, bias_value)
  57. def generate_anchors(self, fmp_size):
  58. """
  59. fmp_size: (List) [H, W]
  60. """
  61. fmp_h, fmp_w = fmp_size
  62. # generate grid cells
  63. anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
  64. anchor_xy = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2)
  65. # [HW, 2] -> [HW, A, 2] -> [M, 2]
  66. anchor_xy = anchor_xy.unsqueeze(1).repeat(1, self.num_anchors, 1)
  67. anchor_xy = anchor_xy.view(-1, 2).to(self.device)
  68. # [A, 2] -> [1, A, 2] -> [HW, A, 2] -> [M, 2]
  69. anchor_wh = self.anchor_size.unsqueeze(0).repeat(fmp_h*fmp_w, 1, 1)
  70. anchor_wh = anchor_wh.view(-1, 2).to(self.device)
  71. anchors = torch.cat([anchor_xy, anchor_wh], dim=-1)
  72. return anchors
  73. def decode_boxes(self, anchors, reg_pred):
  74. """
  75. 将txtytwth转换为常用的x1y1x2y2形式。
  76. """
  77. # 计算预测边界框的中心点坐标和宽高
  78. pred_ctr = (torch.sigmoid(reg_pred[..., :2]) + anchors[..., :2]) * self.stride
  79. pred_wh = torch.exp(reg_pred[..., 2:]) * anchors[..., 2:]
  80. # 将所有bbox的中心带你坐标和宽高换算成x1y1x2y2形式
  81. pred_x1y1 = pred_ctr - pred_wh * 0.5
  82. pred_x2y2 = pred_ctr + pred_wh * 0.5
  83. pred_box = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
  84. return pred_box
  85. def postprocess(self, obj_pred, cls_pred, reg_pred, anchors):
  86. """
  87. Input:
  88. obj_pred: (Tensor) [H*W*A, 1]
  89. cls_pred: (Tensor) [H*W*A, C]
  90. reg_pred: (Tensor) [H*W*A, 4]
  91. """
  92. if self.no_multi_labels:
  93. # [M,]
  94. scores, labels = torch.max(torch.sqrt(obj_pred.sigmoid() * cls_pred.sigmoid()), dim=1)
  95. # Keep top k top scoring indices only.
  96. num_topk = min(self.topk_candidates, reg_pred.size(0))
  97. # topk candidates
  98. predicted_prob, topk_idxs = scores.sort(descending=True)
  99. topk_scores = predicted_prob[:num_topk]
  100. topk_idxs = topk_idxs[:num_topk]
  101. # filter out the proposals with low confidence score
  102. keep_idxs = topk_scores > self.conf_thresh
  103. scores = topk_scores[keep_idxs]
  104. topk_idxs = topk_idxs[keep_idxs]
  105. labels = labels[topk_idxs]
  106. bboxes = self.decode_boxes(anchors[topk_idxs], reg_pred[topk_idxs])
  107. else:
  108. # (H x W x A x C,)
  109. scores = torch.sqrt(obj_pred.sigmoid() * cls_pred.sigmoid()).flatten()
  110. # Keep top k top scoring indices only.
  111. num_topk = min(self.topk_candidates, reg_pred.size(0))
  112. # torch.sort is actually faster than .topk (at least on GPUs)
  113. predicted_prob, topk_idxs = scores.sort(descending=True)
  114. topk_scores = predicted_prob[:num_topk]
  115. topk_idxs = topk_idxs[:num_topk]
  116. # filter out the proposals with low confidence score
  117. keep_idxs = topk_scores > self.conf_thresh
  118. scores = topk_scores[keep_idxs]
  119. topk_idxs = topk_idxs[keep_idxs]
  120. anchor_idxs = torch.div(topk_idxs, self.num_classes, rounding_mode='floor')
  121. labels = topk_idxs % self.num_classes
  122. reg_pred = reg_pred[anchor_idxs]
  123. anchors = anchors[anchor_idxs]
  124. # 解算边界框, 并归一化边界框: [H*W*A, 4]
  125. bboxes = self.decode_boxes(anchors, reg_pred)
  126. # to cpu & numpy
  127. scores = scores.cpu().numpy()
  128. labels = labels.cpu().numpy()
  129. bboxes = bboxes.cpu().numpy()
  130. # nms
  131. scores, labels, bboxes = multiclass_nms(
  132. scores, labels, bboxes, self.nms_thresh, self.num_classes, self.nms_class_agnostic)
  133. return bboxes, scores, labels
  134. @torch.no_grad()
  135. def inference(self, x):
  136. bs = x.shape[0]
  137. # 主干网络
  138. feat = self.backbone(x)
  139. # 颈部网络
  140. feat = self.neck(feat)
  141. # 检测头
  142. cls_feat, reg_feat = self.head(feat)
  143. # 预测层
  144. obj_pred = self.obj_pred(reg_feat)
  145. cls_pred = self.cls_pred(cls_feat)
  146. reg_pred = self.reg_pred(reg_feat)
  147. fmp_size = obj_pred.shape[-2:]
  148. # anchors: [M, 2]
  149. anchors = self.generate_anchors(fmp_size)
  150. # 对 pred 的size做一些view调整,便于后续的处理
  151. # [B, A*C, H, W] -> [B, H, W, A*C] -> [B, H*W*A, C]
  152. obj_pred = obj_pred.permute(0, 2, 3, 1).contiguous().view(bs, -1, 1)
  153. cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(bs, -1, self.num_classes)
  154. reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(bs, -1, 4)
  155. # 测试时,笔者默认batch是1,
  156. # 因此,我们不需要用batch这个维度,用[0]将其取走。
  157. obj_pred = obj_pred[0] # [H*W*A, 1]
  158. cls_pred = cls_pred[0] # [H*W*A, NC]
  159. reg_pred = reg_pred[0] # [H*W*A, 4]
  160. if self.deploy:
  161. scores = torch.sqrt(obj_pred.sigmoid() * cls_pred.sigmoid())
  162. bboxes = self.decode_boxes(anchors, reg_pred)
  163. # [n_anchors_all, 4 + C]
  164. outputs = torch.cat([bboxes, scores], dim=-1)
  165. else:
  166. # post process
  167. bboxes, scores, labels = self.postprocess(
  168. obj_pred, cls_pred, reg_pred, anchors)
  169. outputs = {
  170. "scores": scores,
  171. "labels": labels,
  172. "bboxes": bboxes
  173. }
  174. return outputs
  175. def forward(self, x):
  176. if not self.trainable:
  177. return self.inference(x)
  178. else:
  179. bs = x.shape[0]
  180. # 主干网络
  181. feat = self.backbone(x)
  182. # 颈部网络
  183. feat = self.neck(feat)
  184. # 检测头
  185. cls_feat, reg_feat = self.head(feat)
  186. # 预测层
  187. obj_pred = self.obj_pred(reg_feat)
  188. cls_pred = self.cls_pred(cls_feat)
  189. reg_pred = self.reg_pred(reg_feat)
  190. fmp_size = obj_pred.shape[-2:]
  191. # anchors: [M, 2]
  192. anchors = self.generate_anchors(fmp_size)
  193. # 对 pred 的size做一些view调整,便于后续的处理
  194. # [B, A*C, H, W] -> [B, H, W, A*C] -> [B, H*W*A, C]
  195. obj_pred = obj_pred.permute(0, 2, 3, 1).contiguous().view(bs, -1, 1)
  196. cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(bs, -1, self.num_classes)
  197. reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(bs, -1, 4)
  198. # decode bbox
  199. box_pred = self.decode_boxes(anchors, reg_pred)
  200. # 网络输出
  201. outputs = {"pred_obj": obj_pred, # (Tensor) [B, M, 1]
  202. "pred_cls": cls_pred, # (Tensor) [B, M, C]
  203. "pred_box": box_pred, # (Tensor) [B, M, 4]
  204. "stride": self.stride, # (Int)
  205. "fmp_size": fmp_size # (List) [fmp_h, fmp_w]
  206. }
  207. return outputs