yolovx.py 9.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257
  1. # --------------- Torch components ---------------
  2. import torch
  3. import torch.nn as nn
  4. import torch.nn.functional as F
  5. # --------------- Model components ---------------
  6. from .yolovx_backbone import build_backbone
  7. from .yolovx_neck import build_neck
  8. from .yolovx_pafpn import build_fpn
  9. from .yolovx_head import build_head
  10. # --------------- External components ---------------
  11. from utils.misc import multiclass_nms
  12. # YOLOvx
  13. class YOLOvx(nn.Module):
  14. def __init__(self,
  15. cfg,
  16. device,
  17. num_classes = 20,
  18. conf_thresh = 0.05,
  19. nms_thresh = 0.6,
  20. trainable = False,
  21. topk = 1000,
  22. deploy = False):
  23. super(YOLOvx, self).__init__()
  24. # ---------------------- Basic Parameters ----------------------
  25. self.cfg = cfg
  26. self.device = device
  27. self.stride = cfg['stride']
  28. self.reg_max = cfg['reg_max']
  29. self.num_classes = num_classes
  30. self.trainable = trainable
  31. self.conf_thresh = conf_thresh
  32. self.nms_thresh = nms_thresh
  33. self.topk = topk
  34. self.deploy = deploy
  35. self.head_dim = round(256*cfg['width'])
  36. # ---------------------- Network Parameters ----------------------
  37. ## ----------- Backbone -----------
  38. self.backbone, feats_dim = build_backbone(cfg, trainable&cfg['pretrained'])
  39. ## ----------- Neck: SPP -----------
  40. self.neck = build_neck(cfg=cfg, in_dim=feats_dim[-1], out_dim=feats_dim[-1])
  41. feats_dim[-1] = self.neck.out_dim
  42. ## ----------- Neck: FPN -----------
  43. self.fpn = build_fpn(cfg=cfg, in_dims=feats_dim, out_dim=round(256*cfg['width']))
  44. self.fpn_dims = self.fpn.out_dim
  45. ## ----------- Heads -----------
  46. self.heads = nn.ModuleList(
  47. [build_head(cfg, fpn_dim, self.head_dim, num_classes)
  48. for fpn_dim in self.fpn_dims
  49. ])
  50. ## ----------- Preds -----------
  51. self.obj_preds = nn.ModuleList(
  52. [nn.Conv2d(head.reg_out_dim, 1, kernel_size=1)
  53. for head in self.heads
  54. ])
  55. self.cls_preds = nn.ModuleList(
  56. [nn.Conv2d(head.cls_out_dim, self.num_classes, kernel_size=1)
  57. for head in self.heads
  58. ])
  59. self.reg_preds = nn.ModuleList(
  60. [nn.Conv2d(head.reg_out_dim, 4, kernel_size=1)
  61. for head in self.heads
  62. ])
  63. # ---------------------- Basic Functions ----------------------
  64. ## generate anchor points
  65. def generate_anchors(self, level, fmp_size):
  66. """
  67. fmp_size: (List) [H, W]
  68. """
  69. # generate grid cells
  70. fmp_h, fmp_w = fmp_size
  71. anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
  72. # [H, W, 2] -> [HW, 2]
  73. anchor_xy = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2)
  74. anchor_xy += 0.5 # add center offset
  75. anchor_xy *= self.stride[level]
  76. anchors = anchor_xy.to(self.device)
  77. return anchors
  78. ## post-process
  79. def post_process(self, obj_preds, cls_preds, box_preds):
  80. """
  81. Input:
  82. obj_preds: List(Tensor) [[H x W, 1], ...]
  83. cls_preds: List(Tensor) [[H x W, C], ...]
  84. box_preds: List(Tensor) [[H x W, 4], ...]
  85. anchors: List(Tensor) [[H x W, 2], ...]
  86. """
  87. all_scores = []
  88. all_labels = []
  89. all_bboxes = []
  90. for obj_pred_i, cls_pred_i, box_pred_i in zip(obj_preds, cls_preds, box_preds):
  91. # (H x W x KA x C,)
  92. scores_i = (torch.sqrt(obj_pred_i.sigmoid() * cls_pred_i.sigmoid())).flatten()
  93. # Keep top k top scoring indices only.
  94. num_topk = min(self.topk, box_pred_i.size(0))
  95. # torch.sort is actually faster than .topk (at least on GPUs)
  96. predicted_prob, topk_idxs = scores_i.sort(descending=True)
  97. topk_scores = predicted_prob[:num_topk]
  98. topk_idxs = topk_idxs[:num_topk]
  99. # filter out the proposals with low confidence score
  100. keep_idxs = topk_scores > self.conf_thresh
  101. scores = topk_scores[keep_idxs]
  102. topk_idxs = topk_idxs[keep_idxs]
  103. anchor_idxs = torch.div(topk_idxs, self.num_classes, rounding_mode='floor')
  104. labels = topk_idxs % self.num_classes
  105. bboxes = box_pred_i[anchor_idxs]
  106. all_scores.append(scores)
  107. all_labels.append(labels)
  108. all_bboxes.append(bboxes)
  109. scores = torch.cat(all_scores)
  110. labels = torch.cat(all_labels)
  111. bboxes = torch.cat(all_bboxes)
  112. # to cpu & numpy
  113. scores = scores.cpu().numpy()
  114. labels = labels.cpu().numpy()
  115. bboxes = bboxes.cpu().numpy()
  116. # nms
  117. scores, labels, bboxes = multiclass_nms(
  118. scores, labels, bboxes, self.nms_thresh, self.num_classes, False)
  119. return bboxes, scores, labels
  120. # ---------------------- Main Process for Inference ----------------------
  121. @torch.no_grad()
  122. def inference_single_image(self, x):
  123. # backbone
  124. pyramid_feats = self.backbone(x)
  125. # fpn
  126. pyramid_feats = self.fpn(pyramid_feats)
  127. # non-shared heads
  128. all_obj_preds = []
  129. all_cls_preds = []
  130. all_box_preds = []
  131. for level, (feat, head) in enumerate(zip(pyramid_feats, self.heads)):
  132. cls_feat, reg_feat = head(feat)
  133. # [1, C, H, W]
  134. obj_pred = self.obj_preds[level](reg_feat)
  135. cls_pred = self.cls_preds[level](cls_feat)
  136. reg_pred = self.reg_preds[level](reg_feat)
  137. # anchors: [M, 2]
  138. fmp_size = cls_pred.shape[-2:]
  139. anchors = self.generate_anchors(level, fmp_size)
  140. # [1, C, H, W] -> [H, W, C] -> [M, C]
  141. obj_pred = obj_pred[0].permute(1, 2, 0).contiguous().view(-1, 1)
  142. cls_pred = cls_pred[0].permute(1, 2, 0).contiguous().view(-1, self.num_classes)
  143. reg_pred = reg_pred[0].permute(1, 2, 0).contiguous().view(-1, 4)
  144. # decode bbox
  145. ctr_pred = reg_pred[..., :2] * self.stride[level] + anchors[..., :2]
  146. wh_pred = torch.exp(reg_pred[..., 2:]) * self.stride[level]
  147. pred_x1y1 = ctr_pred - wh_pred * 0.5
  148. pred_x2y2 = ctr_pred + wh_pred * 0.5
  149. box_pred = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
  150. all_obj_preds.append(obj_pred)
  151. all_cls_preds.append(cls_pred)
  152. all_box_preds.append(box_pred)
  153. if self.deploy:
  154. obj_preds = torch.cat(all_obj_preds, dim=0)
  155. cls_preds = torch.cat(all_cls_preds, dim=0)
  156. box_preds = torch.cat(all_box_preds, dim=0)
  157. scores = torch.sqrt(obj_preds.sigmoid() * cls_preds.sigmoid())
  158. bboxes = box_preds
  159. # [n_anchors_all, 4 + C]
  160. outputs = torch.cat([bboxes, scores], dim=-1)
  161. return outputs
  162. else:
  163. # post process
  164. bboxes, scores, labels = self.post_process(
  165. all_obj_preds, all_cls_preds, all_box_preds)
  166. return bboxes, scores, labels
  167. def forward(self, x):
  168. if not self.trainable:
  169. return self.inference_single_image(x)
  170. else:
  171. # backbone
  172. pyramid_feats = self.backbone(x)
  173. # fpn
  174. pyramid_feats = self.fpn(pyramid_feats)
  175. # non-shared heads
  176. all_anchors = []
  177. all_obj_preds = []
  178. all_cls_preds = []
  179. all_box_preds = []
  180. for level, (feat, head) in enumerate(zip(pyramid_feats, self.heads)):
  181. cls_feat, reg_feat = head(feat)
  182. # [B, C, H, W]
  183. obj_pred = self.obj_preds[level](reg_feat)
  184. cls_pred = self.cls_preds[level](cls_feat)
  185. reg_pred = self.reg_preds[level](reg_feat)
  186. B, _, H, W = cls_pred.size()
  187. fmp_size = [H, W]
  188. # generate anchor boxes: [M, 4]
  189. anchors = self.generate_anchors(level, fmp_size)
  190. # [B, C, H, W] -> [B, H, W, C] -> [B, M, C]
  191. obj_pred = obj_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 1)
  192. cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, self.num_classes)
  193. reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 4)
  194. # decode bbox
  195. ctr_pred = reg_pred[..., :2] * self.stride[level] + anchors[..., :2]
  196. wh_pred = torch.exp(reg_pred[..., 2:]) * self.stride[level]
  197. pred_x1y1 = ctr_pred - wh_pred * 0.5
  198. pred_x2y2 = ctr_pred + wh_pred * 0.5
  199. box_pred = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
  200. all_obj_preds.append(obj_pred)
  201. all_cls_preds.append(cls_pred)
  202. all_box_preds.append(box_pred)
  203. all_anchors.append(anchors)
  204. # output dict
  205. outputs = {"pred_obj": all_obj_preds, # List(Tensor) [B, M, 1]
  206. "pred_cls": all_cls_preds, # List(Tensor) [B, M, C]
  207. "pred_box": all_box_preds, # List(Tensor) [B, M, 4]
  208. "anchors": all_anchors, # List(Tensor) [B, M, 2]
  209. 'strides': self.stride} # List(Int) [8, 16, 32]
  210. return outputs