loss.py 5.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167
  1. import torch
  2. import torch.nn.functional as F
  3. from .matcher import AlignedSimOTA
  4. from utils.box_ops import get_ious
  5. from utils.distributed_utils import get_world_size, is_dist_avail_and_initialized
  6. class Criterion(object):
  7. def __init__(self,
  8. cfg,
  9. device,
  10. num_classes=80):
  11. self.cfg = cfg
  12. self.device = device
  13. self.num_classes = num_classes
  14. # loss weight
  15. self.loss_obj_weight = cfg['loss_obj_weight']
  16. self.loss_cls_weight = cfg['loss_cls_weight']
  17. self.loss_box_weight = cfg['loss_box_weight']
  18. # matcher
  19. matcher_config = cfg['matcher']
  20. self.matcher = AlignedSimOTA(
  21. num_classes=num_classes,
  22. center_sampling_radius=matcher_config['center_sampling_radius'],
  23. topk_candidate=matcher_config['topk_candicate']
  24. )
  25. def loss_objectness(self, pred_obj, gt_obj):
  26. loss_obj = F.binary_cross_entropy_with_logits(pred_obj, gt_obj, reduction='none')
  27. return loss_obj
  28. def loss_classes(self, pred_cls, gt_label):
  29. loss_cls = F.binary_cross_entropy_with_logits(pred_cls, gt_label, reduction='none')
  30. return loss_cls
  31. def loss_bboxes(self, pred_box, gt_box):
  32. # regression loss
  33. ious = get_ious(pred_box,
  34. gt_box,
  35. box_mode="xyxy",
  36. iou_type='giou')
  37. loss_box = 1.0 - ious
  38. return loss_box
  39. def __call__(self, outputs, targets, epoch=0):
  40. """
  41. outputs['pred_obj']: List(Tensor) [B, M, 1]
  42. outputs['pred_cls']: List(Tensor) [B, M, C]
  43. outputs['pred_box']: List(Tensor) [B, M, 4]
  44. outputs['strides']: List(Int) [8, 16, 32] output stride
  45. targets: (List) [dict{'boxes': [...],
  46. 'labels': [...],
  47. 'orig_size': ...}, ...]
  48. """
  49. bs = outputs['pred_cls'][0].shape[0]
  50. device = outputs['pred_cls'][0].device
  51. fpn_strides = outputs['strides']
  52. anchors = outputs['anchors']
  53. # preds: [B, M, C]
  54. obj_preds = torch.cat(outputs['pred_obj'], dim=1)
  55. cls_preds = torch.cat(outputs['pred_cls'], dim=1)
  56. box_preds = torch.cat(outputs['pred_box'], dim=1)
  57. # label assignment
  58. cls_targets = []
  59. box_targets = []
  60. obj_targets = []
  61. fg_masks = []
  62. for batch_idx in range(bs):
  63. tgt_labels = targets[batch_idx]["labels"].to(device)
  64. tgt_bboxes = targets[batch_idx]["boxes"].to(device)
  65. # check target
  66. if len(tgt_labels) == 0 or tgt_bboxes.max().item() == 0.:
  67. num_anchors = sum([ab.shape[0] for ab in anchors])
  68. # There is no valid gt
  69. cls_target = obj_preds.new_zeros((0, self.num_classes))
  70. box_target = obj_preds.new_zeros((0, 4))
  71. obj_target = obj_preds.new_zeros((num_anchors, 1))
  72. fg_mask = obj_preds.new_zeros(num_anchors).bool()
  73. else:
  74. (
  75. gt_matched_classes,
  76. fg_mask,
  77. pred_ious_this_matching,
  78. matched_gt_inds,
  79. num_fg_img,
  80. ) = self.matcher(
  81. fpn_strides = fpn_strides,
  82. anchors = anchors,
  83. pred_obj = obj_preds[batch_idx],
  84. pred_cls = cls_preds[batch_idx],
  85. pred_box = box_preds[batch_idx],
  86. tgt_labels = tgt_labels,
  87. tgt_bboxes = tgt_bboxes
  88. )
  89. obj_target = fg_mask.unsqueeze(-1)
  90. cls_target = F.one_hot(gt_matched_classes.long(), self.num_classes)
  91. cls_target = cls_target * pred_ious_this_matching.unsqueeze(-1)
  92. box_target = tgt_bboxes[matched_gt_inds]
  93. cls_targets.append(cls_target)
  94. box_targets.append(box_target)
  95. obj_targets.append(obj_target)
  96. fg_masks.append(fg_mask)
  97. cls_targets = torch.cat(cls_targets, 0)
  98. box_targets = torch.cat(box_targets, 0)
  99. obj_targets = torch.cat(obj_targets, 0)
  100. fg_masks = torch.cat(fg_masks, 0)
  101. num_fgs = fg_masks.sum()
  102. if is_dist_avail_and_initialized():
  103. torch.distributed.all_reduce(num_fgs)
  104. num_fgs = (num_fgs / get_world_size()).clamp(1.0)
  105. # obj loss
  106. loss_obj = self.loss_objectness(obj_preds.view(-1, 1), obj_targets.float())
  107. loss_obj = loss_obj.sum() / num_fgs
  108. # cls loss
  109. cls_preds_pos = cls_preds.view(-1, self.num_classes)[fg_masks]
  110. loss_cls = self.loss_classes(cls_preds_pos, cls_targets)
  111. loss_cls = loss_cls.sum() / num_fgs
  112. # regression loss
  113. box_preds_pos = box_preds.view(-1, 4)[fg_masks]
  114. loss_box = self.loss_bboxes(box_preds_pos, box_targets)
  115. loss_box = loss_box.sum() / num_fgs
  116. # total loss
  117. losses = self.loss_obj_weight * loss_obj + \
  118. self.loss_cls_weight * loss_cls + \
  119. self.loss_box_weight * loss_box
  120. loss_dict = dict(
  121. loss_obj = loss_obj,
  122. loss_cls = loss_cls,
  123. loss_box = loss_box,
  124. losses = losses
  125. )
  126. return loss_dict
  127. def build_criterion(cfg, device, num_classes):
  128. criterion = Criterion(
  129. cfg=cfg,
  130. device=device,
  131. num_classes=num_classes
  132. )
  133. return criterion
  134. if __name__ == "__main__":
  135. pass