yolovx_config.py 3.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113
  1. # YOLOvx Config
  2. yolovx_cfg = {
  3. 'yolovx_n':{
  4. # ---------------- Model config ----------------
  5. ## Backbone
  6. 'backbone': 'elannet',
  7. 'pretrained': False,
  8. 'bk_act': 'silu',
  9. 'bk_norm': 'BN',
  10. 'bk_dpw': False,
  11. 'width': 0.25,
  12. 'depth': 0.34,
  13. 'stride': [8, 16, 32], # P3, P4, P5
  14. 'max_stride': 32,
  15. ## Neck: SPP
  16. 'neck': 'sppf',
  17. 'neck_expand_ratio': 0.5,
  18. 'pooling_size': 5,
  19. 'neck_act': 'silu',
  20. 'neck_norm': 'BN',
  21. 'neck_depthwise': False,
  22. ## Neck: PaFPN
  23. 'fpn': 'yolovx_pafpn',
  24. 'fpn_reduce_layer': 'conv',
  25. 'fpn_downsample_layer': 'conv',
  26. 'fpn_core_block': 'elanblock',
  27. 'fpn_expand_ratio': 0.5,
  28. 'fpn_act': 'silu',
  29. 'fpn_norm': 'BN',
  30. 'fpn_depthwise': False,
  31. ## Head
  32. 'head': 'decoupled_head',
  33. 'head_act': 'silu',
  34. 'head_norm': 'BN',
  35. 'num_cls_head': 2,
  36. 'num_reg_head': 2,
  37. 'head_depthwise': False,
  38. 'reg_max': 16,
  39. # ---------------- Train config ----------------
  40. ## Input
  41. 'multi_scale': [0.5, 1.25], # 320 -> 960
  42. 'trans_type': 'yolox_nano',
  43. # ---------------- Assignment config ----------------
  44. ## Matcher
  45. 'matcher': {'center_sampling_radius': 2.5,
  46. 'topk_candicate': 10},
  47. # ---------------- Loss config ----------------
  48. ## Loss weight
  49. 'loss_obj_weight': 1.0,
  50. 'loss_cls_weight': 1.0,
  51. 'loss_box_weight': 5.0,
  52. 'loss_dfl_weight': 1.0,
  53. # ---------------- Train config ----------------
  54. 'trainer_type': 'rtmdet',
  55. },
  56. 'yolovx_l':{
  57. # ---------------- Model config ----------------
  58. ## Backbone
  59. 'backbone': 'elannet',
  60. 'pretrained': False,
  61. 'bk_act': 'silu',
  62. 'bk_norm': 'BN',
  63. 'bk_dpw': False,
  64. 'width': 1.0,
  65. 'depth': 1.0,
  66. 'stride': [8, 16, 32], # P3, P4, P5
  67. 'max_stride': 32,
  68. ## Neck: SPP
  69. 'neck': 'sppf',
  70. 'neck_expand_ratio': 0.5,
  71. 'pooling_size': 5,
  72. 'neck_act': 'silu',
  73. 'neck_norm': 'BN',
  74. 'neck_depthwise': False,
  75. ## Neck: PaFPN
  76. 'fpn': 'yolovx_pafpn',
  77. 'fpn_reduce_layer': 'conv',
  78. 'fpn_downsample_layer': 'conv',
  79. 'fpn_core_block': 'elanblock',
  80. 'fpn_expand_ratio': 0.5,
  81. 'fpn_act': 'silu',
  82. 'fpn_norm': 'BN',
  83. 'fpn_depthwise': False,
  84. ## Head
  85. 'head': 'decoupled_head',
  86. 'head_act': 'silu',
  87. 'head_norm': 'BN',
  88. 'num_cls_head': 2,
  89. 'num_reg_head': 2,
  90. 'head_depthwise': False,
  91. 'reg_max': 16,
  92. # ---------------- Train config ----------------
  93. ## Input
  94. 'multi_scale': [0.5, 1.25], # 320 -> 960
  95. 'trans_type': 'yolox_nano',
  96. # ---------------- Assignment config ----------------
  97. ## Matcher
  98. 'matcher': {'center_sampling_radius': 2.5,
  99. 'topk_candicate': 10},
  100. # ---------------- Loss config ----------------
  101. ## Loss weight
  102. 'loss_obj_weight': 1.0,
  103. 'loss_cls_weight': 1.0,
  104. 'loss_box_weight': 5.0,
  105. 'loss_dfl_weight': 1.0,
  106. # ---------------- Train config ----------------
  107. 'trainer_type': 'rtmdet',
  108. },
  109. }