yolox_config.py 1.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051
  1. # YOLOx Config
  2. yolox_cfg = {
  3. # input
  4. 'trans_type': 'yolov5_strong',
  5. 'multi_scale': [0.5, 1.0],
  6. # model
  7. 'backbone': 'cspdarknet',
  8. 'pretrained': True,
  9. 'bk_act': 'silu',
  10. 'bk_norm': 'BN',
  11. 'bk_dpw': False,
  12. 'stride': [8, 16, 32], # P3, P4, P5
  13. 'width': 1.0,
  14. 'depth': 1.0,
  15. # fpn
  16. 'fpn': 'yolo_pafpn',
  17. 'fpn_act': 'silu',
  18. 'fpn_norm': 'BN',
  19. 'fpn_depthwise': False,
  20. # head
  21. 'head': 'decoupled_head',
  22. 'head_act': 'silu',
  23. 'head_norm': 'BN',
  24. 'num_cls_head': 2,
  25. 'num_reg_head': 2,
  26. 'head_depthwise': False,
  27. # matcher
  28. 'matcher': {'center_sampling_radius': 2.5,
  29. 'topk_candicate': 10},
  30. # loss weight
  31. 'loss_obj_weight': 1.0,
  32. 'loss_cls_weight': 1.0,
  33. 'loss_box_weight': 5.0,
  34. # training configuration
  35. 'no_aug_epoch': 20,
  36. # optimizer
  37. 'optimizer': 'sgd', # optional: sgd, adam, adamw
  38. 'momentum': 0.937, # SGD: 0.937; AdamW: invalid
  39. 'weight_decay': 5e-4, # SGD: 5e-4; AdamW: 5e-2
  40. 'clip_grad': 10, # SGD: 10.0; AdamW: -1
  41. # model EMA
  42. 'ema_decay': 0.9999, # SGD: 0.9999; AdamW: 0.9998
  43. 'ema_tau': 2000,
  44. # lr schedule
  45. 'scheduler': 'linear',
  46. 'lr0': 0.01, # SGD: 0.01; AdamW: 0.004
  47. 'lrf': 0.01, # SGD: 0.01; AdamW: 0.05
  48. 'warmup_momentum': 0.8,
  49. 'warmup_bias_lr': 0.1,
  50. }