engine.py 115 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558
  1. import torch
  2. import torch.distributed as dist
  3. import time
  4. import os
  5. import numpy as np
  6. import random
  7. # ----------------- Extra Components -----------------
  8. from utils import distributed_utils
  9. from utils.misc import ModelEMA, CollateFunc, build_dataloader
  10. from utils.misc import MetricLogger, SmoothedValue
  11. from utils.vis_tools import vis_data
  12. # ----------------- Evaluator Components -----------------
  13. from evaluator.build import build_evluator
  14. # ----------------- Optimizer & LrScheduler Components -----------------
  15. from utils.solver.optimizer import build_yolo_optimizer, build_rtdetr_optimizer
  16. from utils.solver.lr_scheduler import build_lr_scheduler
  17. # ----------------- Dataset Components -----------------
  18. from dataset.build import build_dataset, build_transform
  19. # ----------------------- Det trainers -----------------------
  20. ## YOLOv8 Trainer
  21. class Yolov8Trainer(object):
  22. def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
  23. # ------------------- basic parameters -------------------
  24. self.args = args
  25. self.epoch = 0
  26. self.best_map = -1.
  27. self.device = device
  28. self.criterion = criterion
  29. self.world_size = world_size
  30. self.heavy_eval = False
  31. self.last_opt_step = 0
  32. self.clip_grad = 10
  33. # weak augmentatino stage
  34. self.second_stage = False
  35. self.third_stage = False
  36. self.second_stage_epoch = args.no_aug_epoch
  37. self.third_stage_epoch = args.no_aug_epoch // 2
  38. # path to save model
  39. self.path_to_save = os.path.join(args.save_folder, args.dataset, args.model)
  40. os.makedirs(self.path_to_save, exist_ok=True)
  41. # ---------------------------- Hyperparameters refer to YOLOv8 ----------------------------
  42. self.optimizer_dict = {'optimizer': 'sgd', 'momentum': 0.937, 'weight_decay': 5e-4, 'lr0': 0.01}
  43. self.ema_dict = {'ema_decay': 0.9999, 'ema_tau': 2000}
  44. self.lr_schedule_dict = {'scheduler': 'linear', 'lrf': 0.01}
  45. self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}
  46. # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
  47. self.data_cfg = data_cfg
  48. self.model_cfg = model_cfg
  49. self.trans_cfg = trans_cfg
  50. # ---------------------------- Build Transform ----------------------------
  51. self.train_transform, self.trans_cfg = build_transform(
  52. args=args, trans_config=self.trans_cfg, max_stride=model_cfg['max_stride'], is_train=True)
  53. self.val_transform, _ = build_transform(
  54. args=args, trans_config=self.trans_cfg, max_stride=model_cfg['max_stride'], is_train=False)
  55. # ---------------------------- Build Dataset & Dataloader ----------------------------
  56. self.dataset, self.dataset_info = build_dataset(self.args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
  57. self.train_loader = build_dataloader(self.args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
  58. # ---------------------------- Build Evaluator ----------------------------
  59. self.evaluator = build_evluator(self.args, self.data_cfg, self.val_transform, self.device)
  60. # ---------------------------- Build Grad. Scaler ----------------------------
  61. self.scaler = torch.cuda.amp.GradScaler(enabled=self.args.fp16)
  62. # ---------------------------- Build Optimizer ----------------------------
  63. accumulate = max(1, round(64 / self.args.batch_size))
  64. print('Grad Accumulate: {}'.format(accumulate))
  65. self.optimizer_dict['weight_decay'] *= self.args.batch_size * accumulate / 64
  66. self.optimizer, self.start_epoch = build_yolo_optimizer(self.optimizer_dict, model, self.args.resume)
  67. # ---------------------------- Build LR Scheduler ----------------------------
  68. self.lr_scheduler, self.lf = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, self.args.max_epoch)
  69. self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
  70. if self.args.resume and self.args.resume != 'None':
  71. self.lr_scheduler.step()
  72. # ---------------------------- Build Model-EMA ----------------------------
  73. if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
  74. print('Build ModelEMA ...')
  75. self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
  76. else:
  77. self.model_ema = None
  78. def train(self, model):
  79. for epoch in range(self.start_epoch, self.args.max_epoch):
  80. if self.args.distributed:
  81. self.train_loader.batch_sampler.sampler.set_epoch(epoch)
  82. # check second stage
  83. if epoch >= (self.args.max_epoch - self.second_stage_epoch - 1) and not self.second_stage:
  84. self.check_second_stage()
  85. # save model of the last mosaic epoch
  86. weight_name = '{}_last_mosaic_epoch.pth'.format(self.args.model)
  87. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  88. print('Saving state of the last Mosaic epoch-{}.'.format(self.epoch))
  89. torch.save({'model': model.state_dict(),
  90. 'mAP': round(self.evaluator.map*100, 1),
  91. 'optimizer': self.optimizer.state_dict(),
  92. 'epoch': self.epoch,
  93. 'args': self.args},
  94. checkpoint_path)
  95. # check third stage
  96. if epoch >= (self.args.max_epoch - self.third_stage_epoch - 1) and not self.third_stage:
  97. self.check_third_stage()
  98. # save model of the last mosaic epoch
  99. weight_name = '{}_last_weak_augment_epoch.pth'.format(self.args.model)
  100. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  101. print('Saving state of the last weak augment epoch-{}.'.format(self.epoch))
  102. torch.save({'model': model.state_dict(),
  103. 'mAP': round(self.evaluator.map*100, 1),
  104. 'optimizer': self.optimizer.state_dict(),
  105. 'epoch': self.epoch,
  106. 'args': self.args},
  107. checkpoint_path)
  108. # train one epoch
  109. self.epoch = epoch
  110. self.train_one_epoch(model)
  111. # eval one epoch
  112. if self.heavy_eval:
  113. model_eval = model.module if self.args.distributed else model
  114. self.eval(model_eval)
  115. else:
  116. model_eval = model.module if self.args.distributed else model
  117. if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
  118. self.eval(model_eval)
  119. if self.args.debug:
  120. print("For debug mode, we only train 1 epoch")
  121. break
  122. def eval(self, model):
  123. # chech model
  124. model_eval = model if self.model_ema is None else self.model_ema.ema
  125. if distributed_utils.is_main_process():
  126. # check evaluator
  127. if self.evaluator is None:
  128. print('No evaluator ... save model and go on training.')
  129. print('Saving state, epoch: {}'.format(self.epoch))
  130. weight_name = '{}_no_eval.pth'.format(self.args.model)
  131. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  132. torch.save({'model': model_eval.state_dict(),
  133. 'mAP': -1.,
  134. 'optimizer': self.optimizer.state_dict(),
  135. 'epoch': self.epoch,
  136. 'args': self.args},
  137. checkpoint_path)
  138. else:
  139. print('eval ...')
  140. # set eval mode
  141. model_eval.trainable = False
  142. model_eval.eval()
  143. # evaluate
  144. with torch.no_grad():
  145. self.evaluator.evaluate(model_eval)
  146. # save model
  147. cur_map = self.evaluator.map
  148. if cur_map > self.best_map:
  149. # update best-map
  150. self.best_map = cur_map
  151. # save model
  152. print('Saving state, epoch:', self.epoch)
  153. weight_name = '{}_best.pth'.format(self.args.model)
  154. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  155. torch.save({'model': model_eval.state_dict(),
  156. 'mAP': round(self.best_map*100, 1),
  157. 'optimizer': self.optimizer.state_dict(),
  158. 'epoch': self.epoch,
  159. 'args': self.args},
  160. checkpoint_path)
  161. # set train mode.
  162. model_eval.trainable = True
  163. model_eval.train()
  164. if self.args.distributed:
  165. # wait for all processes to synchronize
  166. dist.barrier()
  167. def train_one_epoch(self, model):
  168. # basic parameters
  169. epoch_size = len(self.train_loader)
  170. img_size = self.args.img_size
  171. t0 = time.time()
  172. nw = epoch_size * self.args.wp_epoch
  173. accumulate = accumulate = max(1, round(64 / self.args.batch_size))
  174. # train one epoch
  175. for iter_i, (images, targets) in enumerate(self.train_loader):
  176. ni = iter_i + self.epoch * epoch_size
  177. # Warmup
  178. if ni <= nw:
  179. xi = [0, nw] # x interp
  180. accumulate = max(1, np.interp(ni, xi, [1, 64 / self.args.batch_size]).round())
  181. for j, x in enumerate(self.optimizer.param_groups):
  182. # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
  183. x['lr'] = np.interp(
  184. ni, xi, [self.warmup_dict['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * self.lf(self.epoch)])
  185. if 'momentum' in x:
  186. x['momentum'] = np.interp(ni, xi, [self.warmup_dict['warmup_momentum'], self.optimizer_dict['momentum']])
  187. # to device
  188. images = images.to(self.device, non_blocking=True).float()
  189. # Multi scale
  190. if self.args.multi_scale:
  191. images, targets, img_size = self.rescale_image_targets(
  192. images, targets, self.model_cfg['stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
  193. else:
  194. targets = self.refine_targets(targets, self.args.min_box_size)
  195. # visualize train targets
  196. if self.args.vis_tgt:
  197. vis_data(images*255, targets)
  198. # inference
  199. with torch.cuda.amp.autocast(enabled=self.args.fp16):
  200. outputs = model(images)
  201. # loss
  202. loss_dict = self.criterion(outputs=outputs, targets=targets, epoch=self.epoch)
  203. losses = loss_dict['losses']
  204. losses *= images.shape[0] # loss * bs
  205. # reduce
  206. loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
  207. # gradient averaged between devices in DDP mode
  208. losses *= distributed_utils.get_world_size()
  209. # backward
  210. self.scaler.scale(losses).backward()
  211. # Optimize
  212. if ni - self.last_opt_step >= accumulate:
  213. if self.clip_grad > 0:
  214. # unscale gradients
  215. self.scaler.unscale_(self.optimizer)
  216. # clip gradients
  217. torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=self.clip_grad)
  218. # optimizer.step
  219. self.scaler.step(self.optimizer)
  220. self.scaler.update()
  221. self.optimizer.zero_grad()
  222. # ema
  223. if self.model_ema is not None:
  224. self.model_ema.update(model)
  225. self.last_opt_step = ni
  226. # display
  227. if distributed_utils.is_main_process() and iter_i % 10 == 0:
  228. t1 = time.time()
  229. cur_lr = [param_group['lr'] for param_group in self.optimizer.param_groups]
  230. # basic infor
  231. log = '[Epoch: {}/{}]'.format(self.epoch, self.args.max_epoch)
  232. log += '[Iter: {}/{}]'.format(iter_i, epoch_size)
  233. log += '[lr: {:.6f}]'.format(cur_lr[2])
  234. # loss infor
  235. for k in loss_dict_reduced.keys():
  236. log += '[{}: {:.2f}]'.format(k, loss_dict_reduced[k])
  237. # other infor
  238. log += '[time: {:.2f}]'.format(t1 - t0)
  239. log += '[size: {}]'.format(img_size)
  240. # print log infor
  241. print(log, flush=True)
  242. t0 = time.time()
  243. if self.args.debug:
  244. print("For debug mode, we only train 1 iteration")
  245. break
  246. self.lr_scheduler.step()
  247. def check_second_stage(self):
  248. # set second stage
  249. print('============== Second stage of Training ==============')
  250. self.second_stage = True
  251. # close mosaic augmentation
  252. if self.train_loader.dataset.mosaic_prob > 0.:
  253. print(' - Close < Mosaic Augmentation > ...')
  254. self.train_loader.dataset.mosaic_prob = 0.
  255. self.heavy_eval = True
  256. # close mixup augmentation
  257. if self.train_loader.dataset.mixup_prob > 0.:
  258. print(' - Close < Mixup Augmentation > ...')
  259. self.train_loader.dataset.mixup_prob = 0.
  260. self.heavy_eval = True
  261. # close rotation augmentation
  262. if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
  263. print(' - Close < degress of rotation > ...')
  264. self.trans_cfg['degrees'] = 0.0
  265. if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
  266. print(' - Close < shear of rotation >...')
  267. self.trans_cfg['shear'] = 0.0
  268. if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
  269. print(' - Close < perspective of rotation > ...')
  270. self.trans_cfg['perspective'] = 0.0
  271. # build a new transform for second stage
  272. print(' - Rebuild transforms ...')
  273. self.train_transform, self.trans_cfg = build_transform(
  274. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  275. self.train_loader.dataset.transform = self.train_transform
  276. def check_third_stage(self):
  277. # set third stage
  278. print('============== Third stage of Training ==============')
  279. self.third_stage = True
  280. # close random affine
  281. if 'translate' in self.trans_cfg.keys() and self.trans_cfg['translate'] > 0.0:
  282. print(' - Close < translate of affine > ...')
  283. self.trans_cfg['translate'] = 0.0
  284. if 'scale' in self.trans_cfg.keys():
  285. print(' - Close < scale of affine >...')
  286. self.trans_cfg['scale'] = [1.0, 1.0]
  287. # build a new transform for second stage
  288. print(' - Rebuild transforms ...')
  289. self.train_transform, self.trans_cfg = build_transform(
  290. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  291. self.train_loader.dataset.transform = self.train_transform
  292. def refine_targets(self, targets, min_box_size):
  293. # rescale targets
  294. for tgt in targets:
  295. boxes = tgt["boxes"].clone()
  296. labels = tgt["labels"].clone()
  297. # refine tgt
  298. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  299. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  300. keep = (min_tgt_size >= min_box_size)
  301. tgt["boxes"] = boxes[keep]
  302. tgt["labels"] = labels[keep]
  303. return targets
  304. def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
  305. """
  306. Deployed for Multi scale trick.
  307. """
  308. if isinstance(stride, int):
  309. max_stride = stride
  310. elif isinstance(stride, list):
  311. max_stride = max(stride)
  312. # During training phase, the shape of input image is square.
  313. old_img_size = images.shape[-1]
  314. new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
  315. new_img_size = new_img_size // max_stride * max_stride # size
  316. if new_img_size / old_img_size != 1:
  317. # interpolate
  318. images = torch.nn.functional.interpolate(
  319. input=images,
  320. size=new_img_size,
  321. mode='bilinear',
  322. align_corners=False)
  323. # rescale targets
  324. for tgt in targets:
  325. boxes = tgt["boxes"].clone()
  326. labels = tgt["labels"].clone()
  327. boxes = torch.clamp(boxes, 0, old_img_size)
  328. # rescale box
  329. boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
  330. boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
  331. # refine tgt
  332. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  333. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  334. keep = (min_tgt_size >= min_box_size)
  335. tgt["boxes"] = boxes[keep]
  336. tgt["labels"] = labels[keep]
  337. return images, targets, new_img_size
  338. ## YOLOX Trainer
  339. class YoloxTrainer(object):
  340. def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
  341. # ------------------- basic parameters -------------------
  342. self.args = args
  343. self.epoch = 0
  344. self.best_map = -1.
  345. self.device = device
  346. self.criterion = criterion
  347. self.world_size = world_size
  348. self.grad_accumulate = args.grad_accumulate
  349. self.no_aug_epoch = args.no_aug_epoch
  350. self.heavy_eval = False
  351. # weak augmentatino stage
  352. self.second_stage = False
  353. self.third_stage = False
  354. self.second_stage_epoch = args.no_aug_epoch
  355. self.third_stage_epoch = args.no_aug_epoch // 2
  356. # path to save model
  357. self.path_to_save = os.path.join(args.save_folder, args.dataset, args.model)
  358. os.makedirs(self.path_to_save, exist_ok=True)
  359. # ---------------------------- Hyperparameters refer to YOLOX ----------------------------
  360. self.optimizer_dict = {'optimizer': 'sgd', 'momentum': 0.9, 'weight_decay': 5e-4, 'lr0': 0.01}
  361. self.ema_dict = {'ema_decay': 0.9999, 'ema_tau': 2000}
  362. self.lr_schedule_dict = {'scheduler': 'cosine', 'lrf': 0.05}
  363. self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}
  364. # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
  365. self.data_cfg = data_cfg
  366. self.model_cfg = model_cfg
  367. self.trans_cfg = trans_cfg
  368. # ---------------------------- Build Transform ----------------------------
  369. self.train_transform, self.trans_cfg = build_transform(
  370. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  371. self.val_transform, _ = build_transform(
  372. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
  373. # ---------------------------- Build Dataset & Dataloader ----------------------------
  374. self.dataset, self.dataset_info = build_dataset(self.args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
  375. self.train_loader = build_dataloader(self.args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
  376. # ---------------------------- Build Evaluator ----------------------------
  377. self.evaluator = build_evluator(self.args, self.data_cfg, self.val_transform, self.device)
  378. # ---------------------------- Build Grad. Scaler ----------------------------
  379. self.scaler = torch.cuda.amp.GradScaler(enabled=self.args.fp16)
  380. # ---------------------------- Build Optimizer ----------------------------
  381. self.optimizer_dict['lr0'] *= self.args.batch_size * self.grad_accumulate / 64
  382. self.optimizer, self.start_epoch = build_yolo_optimizer(self.optimizer_dict, model, self.args.resume)
  383. # ---------------------------- Build LR Scheduler ----------------------------
  384. self.lr_scheduler, self.lf = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, self.args.max_epoch - self.no_aug_epoch)
  385. self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
  386. if self.args.resume and self.args.resume != 'None':
  387. self.lr_scheduler.step()
  388. # ---------------------------- Build Model-EMA ----------------------------
  389. if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
  390. print('Build ModelEMA ...')
  391. self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
  392. else:
  393. self.model_ema = None
  394. def train(self, model):
  395. for epoch in range(self.start_epoch, self.args.max_epoch):
  396. if self.args.distributed:
  397. self.train_loader.batch_sampler.sampler.set_epoch(epoch)
  398. # check second stage
  399. if epoch >= (self.args.max_epoch - self.second_stage_epoch - 1) and not self.second_stage:
  400. self.check_second_stage()
  401. # save model of the last mosaic epoch
  402. weight_name = '{}_last_mosaic_epoch.pth'.format(self.args.model)
  403. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  404. print('Saving state of the last Mosaic epoch-{}.'.format(self.epoch))
  405. torch.save({'model': model.state_dict(),
  406. 'mAP': round(self.evaluator.map*100, 1),
  407. 'optimizer': self.optimizer.state_dict(),
  408. 'epoch': self.epoch,
  409. 'args': self.args},
  410. checkpoint_path)
  411. # check third stage
  412. if epoch >= (self.args.max_epoch - self.third_stage_epoch - 1) and not self.third_stage:
  413. self.check_third_stage()
  414. # save model of the last mosaic epoch
  415. weight_name = '{}_last_weak_augment_epoch.pth'.format(self.args.model)
  416. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  417. print('Saving state of the last weak augment epoch-{}.'.format(self.epoch))
  418. torch.save({'model': model.state_dict(),
  419. 'mAP': round(self.evaluator.map*100, 1),
  420. 'optimizer': self.optimizer.state_dict(),
  421. 'epoch': self.epoch,
  422. 'args': self.args},
  423. checkpoint_path)
  424. # train one epoch
  425. self.epoch = epoch
  426. self.train_one_epoch(model)
  427. # eval one epoch
  428. if self.heavy_eval:
  429. model_eval = model.module if self.args.distributed else model
  430. self.eval(model_eval)
  431. else:
  432. model_eval = model.module if self.args.distributed else model
  433. if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
  434. self.eval(model_eval)
  435. if self.args.debug:
  436. print("For debug mode, we only train 1 epoch")
  437. break
  438. def eval(self, model):
  439. # chech model
  440. model_eval = model if self.model_ema is None else self.model_ema.ema
  441. if distributed_utils.is_main_process():
  442. # check evaluator
  443. if self.evaluator is None:
  444. print('No evaluator ... save model and go on training.')
  445. print('Saving state, epoch: {}'.format(self.epoch))
  446. weight_name = '{}_no_eval.pth'.format(self.args.model)
  447. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  448. torch.save({'model': model_eval.state_dict(),
  449. 'mAP': -1.,
  450. 'optimizer': self.optimizer.state_dict(),
  451. 'epoch': self.epoch,
  452. 'args': self.args},
  453. checkpoint_path)
  454. else:
  455. print('eval ...')
  456. # set eval mode
  457. model_eval.trainable = False
  458. model_eval.eval()
  459. # evaluate
  460. with torch.no_grad():
  461. self.evaluator.evaluate(model_eval)
  462. # save model
  463. cur_map = self.evaluator.map
  464. if cur_map > self.best_map:
  465. # update best-map
  466. self.best_map = cur_map
  467. # save model
  468. print('Saving state, epoch:', self.epoch)
  469. weight_name = '{}_best.pth'.format(self.args.model)
  470. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  471. torch.save({'model': model_eval.state_dict(),
  472. 'mAP': round(self.best_map*100, 1),
  473. 'optimizer': self.optimizer.state_dict(),
  474. 'epoch': self.epoch,
  475. 'args': self.args},
  476. checkpoint_path)
  477. # set train mode.
  478. model_eval.trainable = True
  479. model_eval.train()
  480. if self.args.distributed:
  481. # wait for all processes to synchronize
  482. dist.barrier()
  483. def train_one_epoch(self, model):
  484. # basic parameters
  485. epoch_size = len(self.train_loader)
  486. img_size = self.args.img_size
  487. t0 = time.time()
  488. nw = epoch_size * self.args.wp_epoch
  489. # Train one epoch
  490. for iter_i, (images, targets) in enumerate(self.train_loader):
  491. ni = iter_i + self.epoch * epoch_size
  492. # Warmup
  493. if ni <= nw:
  494. xi = [0, nw] # x interp
  495. for j, x in enumerate(self.optimizer.param_groups):
  496. # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
  497. x['lr'] = np.interp(
  498. ni, xi, [self.warmup_dict['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * self.lf(self.epoch)])
  499. if 'momentum' in x:
  500. x['momentum'] = np.interp(ni, xi, [self.warmup_dict['warmup_momentum'], self.optimizer_dict['momentum']])
  501. # To device
  502. images = images.to(self.device, non_blocking=True).float()
  503. # Multi scale
  504. if self.args.multi_scale and ni % 10 == 0:
  505. images, targets, img_size = self.rescale_image_targets(
  506. images, targets, self.model_cfg['stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
  507. else:
  508. targets = self.refine_targets(targets, self.args.min_box_size)
  509. # Visualize train targets
  510. if self.args.vis_tgt:
  511. vis_data(images*255, targets)
  512. # Inference
  513. with torch.cuda.amp.autocast(enabled=self.args.fp16):
  514. outputs = model(images)
  515. # Compute loss
  516. loss_dict = self.criterion(outputs=outputs, targets=targets, epoch=self.epoch)
  517. losses = loss_dict['losses']
  518. # Grad Accu
  519. if self.grad_accumulate > 1:
  520. losses /= self.grad_accumulate
  521. loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
  522. # Backward
  523. self.scaler.scale(losses).backward()
  524. # Optimize
  525. if ni % self.grad_accumulate == 0:
  526. self.scaler.step(self.optimizer)
  527. self.scaler.update()
  528. self.optimizer.zero_grad()
  529. # ema
  530. if self.model_ema is not None:
  531. self.model_ema.update(model)
  532. # Logs
  533. if distributed_utils.is_main_process() and iter_i % 10 == 0:
  534. t1 = time.time()
  535. cur_lr = [param_group['lr'] for param_group in self.optimizer.param_groups]
  536. # basic infor
  537. log = '[Epoch: {}/{}]'.format(self.epoch, self.args.max_epoch)
  538. log += '[Iter: {}/{}]'.format(iter_i, epoch_size)
  539. log += '[lr: {:.6f}]'.format(cur_lr[2])
  540. # loss infor
  541. for k in loss_dict_reduced.keys():
  542. loss_val = loss_dict_reduced[k]
  543. if k == 'losses':
  544. loss_val *= self.grad_accumulate
  545. log += '[{}: {:.2f}]'.format(k, loss_val)
  546. # other infor
  547. log += '[time: {:.2f}]'.format(t1 - t0)
  548. log += '[size: {}]'.format(img_size)
  549. # print log infor
  550. print(log, flush=True)
  551. t0 = time.time()
  552. if self.args.debug:
  553. print("For debug mode, we only train 1 iteration")
  554. break
  555. # LR Schedule
  556. if not self.second_stage:
  557. self.lr_scheduler.step()
  558. def check_second_stage(self):
  559. # set second stage
  560. print('============== Second stage of Training ==============')
  561. self.second_stage = True
  562. # close mosaic augmentation
  563. if self.train_loader.dataset.mosaic_prob > 0.:
  564. print(' - Close < Mosaic Augmentation > ...')
  565. self.train_loader.dataset.mosaic_prob = 0.
  566. self.heavy_eval = True
  567. # close mixup augmentation
  568. if self.train_loader.dataset.mixup_prob > 0.:
  569. print(' - Close < Mixup Augmentation > ...')
  570. self.train_loader.dataset.mixup_prob = 0.
  571. self.heavy_eval = True
  572. # close rotation augmentation
  573. if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
  574. print(' - Close < degress of rotation > ...')
  575. self.trans_cfg['degrees'] = 0.0
  576. if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
  577. print(' - Close < shear of rotation >...')
  578. self.trans_cfg['shear'] = 0.0
  579. if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
  580. print(' - Close < perspective of rotation > ...')
  581. self.trans_cfg['perspective'] = 0.0
  582. # build a new transform for second stage
  583. print(' - Rebuild transforms ...')
  584. self.train_transform, self.trans_cfg = build_transform(
  585. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  586. self.train_loader.dataset.transform = self.train_transform
  587. def check_third_stage(self):
  588. # set third stage
  589. print('============== Third stage of Training ==============')
  590. self.third_stage = True
  591. # close random affine
  592. if 'translate' in self.trans_cfg.keys() and self.trans_cfg['translate'] > 0.0:
  593. print(' - Close < translate of affine > ...')
  594. self.trans_cfg['translate'] = 0.0
  595. if 'scale' in self.trans_cfg.keys():
  596. print(' - Close < scale of affine >...')
  597. self.trans_cfg['scale'] = [1.0, 1.0]
  598. # build a new transform for second stage
  599. print(' - Rebuild transforms ...')
  600. self.train_transform, self.trans_cfg = build_transform(
  601. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  602. self.train_loader.dataset.transform = self.train_transform
  603. def refine_targets(self, targets, min_box_size):
  604. # rescale targets
  605. for tgt in targets:
  606. boxes = tgt["boxes"].clone()
  607. labels = tgt["labels"].clone()
  608. # refine tgt
  609. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  610. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  611. keep = (min_tgt_size >= min_box_size)
  612. tgt["boxes"] = boxes[keep]
  613. tgt["labels"] = labels[keep]
  614. return targets
  615. def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
  616. """
  617. Deployed for Multi scale trick.
  618. """
  619. if isinstance(stride, int):
  620. max_stride = stride
  621. elif isinstance(stride, list):
  622. max_stride = max(stride)
  623. # During training phase, the shape of input image is square.
  624. old_img_size = images.shape[-1]
  625. new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
  626. new_img_size = new_img_size // max_stride * max_stride # size
  627. if new_img_size / old_img_size != 1:
  628. # interpolate
  629. images = torch.nn.functional.interpolate(
  630. input=images,
  631. size=new_img_size,
  632. mode='bilinear',
  633. align_corners=False)
  634. # rescale targets
  635. for tgt in targets:
  636. boxes = tgt["boxes"].clone()
  637. labels = tgt["labels"].clone()
  638. boxes = torch.clamp(boxes, 0, old_img_size)
  639. # rescale box
  640. boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
  641. boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
  642. # refine tgt
  643. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  644. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  645. keep = (min_tgt_size >= min_box_size)
  646. tgt["boxes"] = boxes[keep]
  647. tgt["labels"] = labels[keep]
  648. return images, targets, new_img_size
  649. ## Real-time Convolutional Object Detector Trainer
  650. class RTCTrainer(object):
  651. def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
  652. # ------------------- basic parameters -------------------
  653. self.args = args
  654. self.epoch = 0
  655. self.best_map = -1.
  656. self.device = device
  657. self.criterion = criterion
  658. self.world_size = world_size
  659. self.grad_accumulate = args.grad_accumulate
  660. self.clip_grad = 35
  661. self.heavy_eval = False
  662. # weak augmentatino stage
  663. self.second_stage = False
  664. self.third_stage = False
  665. self.second_stage_epoch = args.no_aug_epoch
  666. self.third_stage_epoch = args.no_aug_epoch // 2
  667. # path to save model
  668. self.path_to_save = os.path.join(args.save_folder, args.dataset, args.model)
  669. os.makedirs(self.path_to_save, exist_ok=True)
  670. # ---------------------------- Hyperparameters refer to RTMDet ----------------------------
  671. self.optimizer_dict = {'optimizer': 'adamw', 'momentum': None, 'weight_decay': 5e-2, 'lr0': 0.001}
  672. self.ema_dict = {'ema_decay': 0.9998, 'ema_tau': 2000}
  673. self.lr_schedule_dict = {'scheduler': 'linear', 'lrf': 0.01}
  674. self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}
  675. # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
  676. self.data_cfg = data_cfg
  677. self.model_cfg = model_cfg
  678. self.trans_cfg = trans_cfg
  679. # ---------------------------- Build Transform ----------------------------
  680. self.train_transform, self.trans_cfg = build_transform(
  681. args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  682. self.val_transform, _ = build_transform(
  683. args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
  684. # ---------------------------- Build Dataset & Dataloader ----------------------------
  685. self.dataset, self.dataset_info = build_dataset(args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
  686. self.train_loader = build_dataloader(args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
  687. # ---------------------------- Build Evaluator ----------------------------
  688. self.evaluator = build_evluator(args, self.data_cfg, self.val_transform, self.device)
  689. # ---------------------------- Build Grad. Scaler ----------------------------
  690. self.scaler = torch.cuda.amp.GradScaler(enabled=args.fp16)
  691. # ---------------------------- Build Optimizer ----------------------------
  692. self.optimizer_dict['lr0'] *= args.batch_size * self.grad_accumulate / 64
  693. self.optimizer, self.start_epoch = build_yolo_optimizer(self.optimizer_dict, model, args.resume)
  694. # ---------------------------- Build LR Scheduler ----------------------------
  695. self.lr_scheduler, self.lf = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, args.max_epoch)
  696. self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
  697. if self.args.resume and self.args.resume != 'None':
  698. self.lr_scheduler.step()
  699. # ---------------------------- Build Model-EMA ----------------------------
  700. if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
  701. print('Build ModelEMA ...')
  702. self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
  703. else:
  704. self.model_ema = None
  705. def train(self, model):
  706. for epoch in range(self.start_epoch, self.args.max_epoch):
  707. if self.args.distributed:
  708. self.train_loader.batch_sampler.sampler.set_epoch(epoch)
  709. # check second stage
  710. if epoch >= (self.args.max_epoch - self.second_stage_epoch - 1) and not self.second_stage:
  711. self.check_second_stage()
  712. # save model of the last mosaic epoch
  713. weight_name = '{}_last_mosaic_epoch.pth'.format(self.args.model)
  714. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  715. print('Saving state of the last Mosaic epoch-{}.'.format(self.epoch))
  716. torch.save({'model': model.state_dict(),
  717. 'mAP': round(self.evaluator.map*100, 1),
  718. 'optimizer': self.optimizer.state_dict(),
  719. 'epoch': self.epoch,
  720. 'args': self.args},
  721. checkpoint_path)
  722. # check third stage
  723. if epoch >= (self.args.max_epoch - self.third_stage_epoch - 1) and not self.third_stage:
  724. self.check_third_stage()
  725. # save model of the last mosaic epoch
  726. weight_name = '{}_last_weak_augment_epoch.pth'.format(self.args.model)
  727. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  728. print('Saving state of the last weak augment epoch-{}.'.format(self.epoch))
  729. torch.save({'model': model.state_dict(),
  730. 'mAP': round(self.evaluator.map*100, 1),
  731. 'optimizer': self.optimizer.state_dict(),
  732. 'epoch': self.epoch,
  733. 'args': self.args},
  734. checkpoint_path)
  735. # train one epoch
  736. self.epoch = epoch
  737. self.train_one_epoch(model)
  738. # eval one epoch
  739. if self.heavy_eval:
  740. model_eval = model.module if self.args.distributed else model
  741. self.eval(model_eval)
  742. else:
  743. model_eval = model.module if self.args.distributed else model
  744. if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
  745. self.eval(model_eval)
  746. if self.args.debug:
  747. print("For debug mode, we only train 1 epoch")
  748. break
  749. def eval(self, model):
  750. # chech model
  751. model_eval = model if self.model_ema is None else self.model_ema.ema
  752. if distributed_utils.is_main_process():
  753. # check evaluator
  754. if self.evaluator is None:
  755. print('No evaluator ... save model and go on training.')
  756. print('Saving state, epoch: {}'.format(self.epoch))
  757. weight_name = '{}_no_eval.pth'.format(self.args.model)
  758. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  759. torch.save({'model': model_eval.state_dict(),
  760. 'mAP': -1.,
  761. 'optimizer': self.optimizer.state_dict(),
  762. 'epoch': self.epoch,
  763. 'args': self.args},
  764. checkpoint_path)
  765. else:
  766. print('eval ...')
  767. # set eval mode
  768. model_eval.trainable = False
  769. model_eval.eval()
  770. # evaluate
  771. with torch.no_grad():
  772. self.evaluator.evaluate(model_eval)
  773. # save model
  774. cur_map = self.evaluator.map
  775. if cur_map > self.best_map:
  776. # update best-map
  777. self.best_map = cur_map
  778. # save model
  779. print('Saving state, epoch:', self.epoch)
  780. weight_name = '{}_best.pth'.format(self.args.model)
  781. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  782. torch.save({'model': model_eval.state_dict(),
  783. 'mAP': round(self.best_map*100, 1),
  784. 'optimizer': self.optimizer.state_dict(),
  785. 'epoch': self.epoch,
  786. 'args': self.args},
  787. checkpoint_path)
  788. # set train mode.
  789. model_eval.trainable = True
  790. model_eval.train()
  791. if self.args.distributed:
  792. # wait for all processes to synchronize
  793. dist.barrier()
  794. def train_one_epoch(self, model):
  795. metric_logger = MetricLogger(delimiter=" ")
  796. metric_logger.add_meter('lr', SmoothedValue(window_size=1, fmt='{value:.6f}'))
  797. metric_logger.add_meter('size', SmoothedValue(window_size=1, fmt='{value:d}'))
  798. metric_logger.add_meter('grad_norm', SmoothedValue(window_size=1, fmt='{value:.1f}'))
  799. header = 'Epoch: [{} / {}]'.format(self.epoch, self.args.max_epoch)
  800. epoch_size = len(self.train_loader)
  801. print_freq = 10
  802. # basic parameters
  803. epoch_size = len(self.train_loader)
  804. img_size = self.args.img_size
  805. nw = epoch_size * self.args.wp_epoch
  806. # Train one epoch
  807. for iter_i, (images, targets) in enumerate(metric_logger.log_every(self.train_loader, print_freq, header)):
  808. ni = iter_i + self.epoch * epoch_size
  809. # Warmup
  810. if ni <= nw:
  811. xi = [0, nw] # x interp
  812. for j, x in enumerate(self.optimizer.param_groups):
  813. # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
  814. x['lr'] = np.interp(
  815. ni, xi, [self.warmup_dict['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * self.lf(self.epoch)])
  816. if 'momentum' in x:
  817. x['momentum'] = np.interp(ni, xi, [self.warmup_dict['warmup_momentum'], self.optimizer_dict['momentum']])
  818. # To device
  819. images = images.to(self.device, non_blocking=True).float()
  820. # Multi scale
  821. if self.args.multi_scale:
  822. images, targets, img_size = self.rescale_image_targets(
  823. images, targets, self.model_cfg['stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
  824. else:
  825. targets = self.refine_targets(targets, self.args.min_box_size)
  826. # Visualize train targets
  827. if self.args.vis_tgt:
  828. vis_data(images*255, targets)
  829. # Inference
  830. with torch.cuda.amp.autocast(enabled=self.args.fp16):
  831. outputs = model(images)
  832. # Compute loss
  833. loss_dict = self.criterion(outputs=outputs, targets=targets, epoch=self.epoch)
  834. losses = loss_dict['losses']
  835. # Grad Accumulate
  836. if self.grad_accumulate > 1:
  837. losses /= self.grad_accumulate
  838. loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
  839. # Backward
  840. self.scaler.scale(losses).backward()
  841. # Optimize
  842. if ni % self.grad_accumulate == 0:
  843. grad_norm = None
  844. if self.clip_grad > 0:
  845. # unscale gradients
  846. self.scaler.unscale_(self.optimizer)
  847. # clip gradients
  848. grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=self.clip_grad)
  849. # optimizer.step
  850. self.scaler.step(self.optimizer)
  851. self.scaler.update()
  852. self.optimizer.zero_grad()
  853. # ema
  854. if self.model_ema is not None:
  855. self.model_ema.update(model)
  856. # Update log
  857. metric_logger.update(**loss_dict_reduced)
  858. metric_logger.update(lr=self.optimizer.param_groups[2]["lr"])
  859. metric_logger.update(grad_norm=grad_norm)
  860. metric_logger.update(size=img_size)
  861. if self.args.debug:
  862. print("For debug mode, we only train 1 iteration")
  863. break
  864. # LR Schedule
  865. if not self.second_stage:
  866. self.lr_scheduler.step()
  867. # Gather the stats from all processes
  868. metric_logger.synchronize_between_processes()
  869. print("Averaged stats:", metric_logger)
  870. def refine_targets(self, targets, min_box_size):
  871. # rescale targets
  872. for tgt in targets:
  873. boxes = tgt["boxes"].clone()
  874. labels = tgt["labels"].clone()
  875. # refine tgt
  876. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  877. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  878. keep = (min_tgt_size >= min_box_size)
  879. tgt["boxes"] = boxes[keep]
  880. tgt["labels"] = labels[keep]
  881. return targets
  882. def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
  883. """
  884. Deployed for Multi scale trick.
  885. """
  886. if isinstance(stride, int):
  887. max_stride = stride
  888. elif isinstance(stride, list):
  889. max_stride = max(stride)
  890. # During training phase, the shape of input image is square.
  891. old_img_size = images.shape[-1]
  892. new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
  893. new_img_size = new_img_size // max_stride * max_stride # size
  894. if new_img_size / old_img_size != 1:
  895. # interpolate
  896. images = torch.nn.functional.interpolate(
  897. input=images,
  898. size=new_img_size,
  899. mode='bilinear',
  900. align_corners=False)
  901. # rescale targets
  902. for tgt in targets:
  903. boxes = tgt["boxes"].clone()
  904. labels = tgt["labels"].clone()
  905. boxes = torch.clamp(boxes, 0, old_img_size)
  906. # rescale box
  907. boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
  908. boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
  909. # refine tgt
  910. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  911. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  912. keep = (min_tgt_size >= min_box_size)
  913. tgt["boxes"] = boxes[keep]
  914. tgt["labels"] = labels[keep]
  915. return images, targets, new_img_size
  916. def check_second_stage(self):
  917. # set second stage
  918. print('============== Second stage of Training ==============')
  919. self.second_stage = True
  920. # close mosaic augmentation
  921. if self.train_loader.dataset.mosaic_prob > 0.:
  922. print(' - Close < Mosaic Augmentation > ...')
  923. self.train_loader.dataset.mosaic_prob = 0.
  924. self.heavy_eval = True
  925. # close mixup augmentation
  926. if self.train_loader.dataset.mixup_prob > 0.:
  927. print(' - Close < Mixup Augmentation > ...')
  928. self.train_loader.dataset.mixup_prob = 0.
  929. self.heavy_eval = True
  930. # close rotation augmentation
  931. if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
  932. print(' - Close < degress of rotation > ...')
  933. self.trans_cfg['degrees'] = 0.0
  934. if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
  935. print(' - Close < shear of rotation >...')
  936. self.trans_cfg['shear'] = 0.0
  937. if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
  938. print(' - Close < perspective of rotation > ...')
  939. self.trans_cfg['perspective'] = 0.0
  940. # build a new transform for second stage
  941. print(' - Rebuild transforms ...')
  942. self.train_transform, self.trans_cfg = build_transform(
  943. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  944. self.train_loader.dataset.transform = self.train_transform
  945. def check_third_stage(self):
  946. # set third stage
  947. print('============== Third stage of Training ==============')
  948. self.third_stage = True
  949. # close random affine
  950. if 'translate' in self.trans_cfg.keys() and self.trans_cfg['translate'] > 0.0:
  951. print(' - Close < translate of affine > ...')
  952. self.trans_cfg['translate'] = 0.0
  953. if 'scale' in self.trans_cfg.keys():
  954. print(' - Close < scale of affine >...')
  955. self.trans_cfg['scale'] = [1.0, 1.0]
  956. # build a new transform for second stage
  957. print(' - Rebuild transforms ...')
  958. self.train_transform, self.trans_cfg = build_transform(
  959. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  960. self.train_loader.dataset.transform = self.train_transform
  961. ## Real-time DETR Trainer
  962. class RTDetrTrainer(object):
  963. def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
  964. # ------------------- Basic parameters -------------------
  965. self.args = args
  966. self.epoch = 0
  967. self.best_map = -1.
  968. self.device = device
  969. self.criterion = criterion
  970. self.world_size = world_size
  971. self.grad_accumulate = args.grad_accumulate
  972. self.clip_grad = 0.1
  973. self.heavy_eval = False
  974. # close AMP for RT-DETR
  975. self.args.fp16 = False
  976. # weak augmentatino stage
  977. self.second_stage = False
  978. self.second_stage_epoch = -1
  979. # path to save model
  980. self.path_to_save = os.path.join(args.save_folder, args.dataset, args.model)
  981. os.makedirs(self.path_to_save, exist_ok=True)
  982. # ---------------------------- Hyperparameters refer to RTMDet ----------------------------
  983. self.optimizer_dict = {'optimizer': 'adamw', 'momentum': None, 'weight_decay': 0.05, 'lr0': 0.0002, 'backbone_lr_ratio': 0.1}
  984. self.lr_schedule_dict = {'scheduler': 'cosine', 'lrf': 0.1, 'warmup_iters': 1000} # no lr decay
  985. self.ema_dict = {'ema_decay': 0.9999, 'ema_tau': 2000}
  986. # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
  987. self.data_cfg = data_cfg
  988. self.model_cfg = model_cfg
  989. self.trans_cfg = trans_cfg
  990. # ---------------------------- Build Transform ----------------------------
  991. self.train_transform, self.trans_cfg = build_transform(
  992. args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  993. self.val_transform, _ = build_transform(
  994. args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
  995. if self.trans_cfg["mosaic_prob"] > 0.5:
  996. self.second_stage_epoch = 5
  997. # ---------------------------- Build Dataset & Dataloader ----------------------------
  998. self.dataset, self.dataset_info = build_dataset(args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
  999. self.train_loader = build_dataloader(args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
  1000. # ---------------------------- Build Evaluator ----------------------------
  1001. self.evaluator = build_evluator(args, self.data_cfg, self.val_transform, self.device)
  1002. # ---------------------------- Build Grad. Scaler ----------------------------
  1003. self.scaler = torch.cuda.amp.GradScaler(enabled=args.fp16)
  1004. # ---------------------------- Build Optimizer ----------------------------
  1005. self.optimizer_dict['lr0'] *= self.args.batch_size / 16. # auto lr scaling
  1006. self.optimizer, self.start_epoch = build_rtdetr_optimizer(self.optimizer_dict, model, self.args.resume)
  1007. # ---------------------------- Build LR Scheduler ----------------------------
  1008. self.lr_scheduler, self.lf = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, args.max_epoch)
  1009. self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
  1010. if self.args.resume and self.args.resume != 'None':
  1011. self.lr_scheduler.step()
  1012. # ---------------------------- Build Model-EMA ----------------------------
  1013. if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
  1014. print('Build ModelEMA ...')
  1015. self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
  1016. else:
  1017. self.model_ema = None
  1018. def train(self, model):
  1019. for epoch in range(self.start_epoch, self.args.max_epoch):
  1020. if self.args.distributed:
  1021. self.train_loader.batch_sampler.sampler.set_epoch(epoch)
  1022. # check second stage
  1023. if epoch >= (self.args.max_epoch - self.second_stage_epoch - 1) and not self.second_stage:
  1024. self.check_second_stage()
  1025. # save model of the last mosaic epoch
  1026. weight_name = '{}_last_mosaic_epoch.pth'.format(self.args.model)
  1027. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  1028. print('Saving state of the last Mosaic epoch-{}.'.format(self.epoch))
  1029. torch.save({'model': model.state_dict(),
  1030. 'mAP': round(self.evaluator.map*100, 1),
  1031. 'optimizer': self.optimizer.state_dict(),
  1032. 'epoch': self.epoch,
  1033. 'args': self.args},
  1034. checkpoint_path)
  1035. # train one epoch
  1036. self.epoch = epoch
  1037. self.train_one_epoch(model)
  1038. # eval one epoch
  1039. if self.heavy_eval:
  1040. model_eval = model.module if self.args.distributed else model
  1041. self.eval(model_eval)
  1042. else:
  1043. model_eval = model.module if self.args.distributed else model
  1044. if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
  1045. self.eval(model_eval)
  1046. if self.args.debug:
  1047. print("For debug mode, we only train 1 epoch")
  1048. break
  1049. def eval(self, model):
  1050. # chech model
  1051. model_eval = model if self.model_ema is None else self.model_ema.ema
  1052. if distributed_utils.is_main_process():
  1053. # check evaluator
  1054. if self.evaluator is None:
  1055. print('No evaluator ... save model and go on training.')
  1056. print('Saving state, epoch: {}'.format(self.epoch))
  1057. weight_name = '{}_no_eval.pth'.format(self.args.model)
  1058. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  1059. torch.save({'model': model_eval.state_dict(),
  1060. 'mAP': -1.,
  1061. 'optimizer': self.optimizer.state_dict(),
  1062. 'epoch': self.epoch,
  1063. 'args': self.args},
  1064. checkpoint_path)
  1065. else:
  1066. print('eval ...')
  1067. # set eval mode
  1068. model_eval.eval()
  1069. # evaluate
  1070. with torch.no_grad():
  1071. self.evaluator.evaluate(model_eval)
  1072. # save model
  1073. cur_map = self.evaluator.map
  1074. if cur_map > self.best_map:
  1075. # update best-map
  1076. self.best_map = cur_map
  1077. # save model
  1078. print('Saving state, epoch:', self.epoch)
  1079. weight_name = '{}_best.pth'.format(self.args.model)
  1080. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  1081. torch.save({'model': model_eval.state_dict(),
  1082. 'mAP': round(self.best_map*100, 1),
  1083. 'optimizer': self.optimizer.state_dict(),
  1084. 'epoch': self.epoch,
  1085. 'args': self.args},
  1086. checkpoint_path)
  1087. # set train mode.
  1088. model_eval.train()
  1089. if self.args.distributed:
  1090. # wait for all processes to synchronize
  1091. dist.barrier()
  1092. def train_one_epoch(self, model):
  1093. metric_logger = MetricLogger(delimiter=" ")
  1094. metric_logger.add_meter('lr', SmoothedValue(window_size=1, fmt='{value:.6f}'))
  1095. metric_logger.add_meter('size', SmoothedValue(window_size=1, fmt='{value:d}'))
  1096. metric_logger.add_meter('grad_norm', SmoothedValue(window_size=1, fmt='{value:.1f}'))
  1097. header = 'Epoch: [{} / {}]'.format(self.epoch, self.args.max_epoch)
  1098. epoch_size = len(self.train_loader)
  1099. print_freq = 10
  1100. # basic parameters
  1101. epoch_size = len(self.train_loader)
  1102. img_size = self.args.img_size
  1103. nw = self.lr_schedule_dict['warmup_iters']
  1104. # Train one epoch
  1105. for iter_i, (images, targets) in enumerate(metric_logger.log_every(self.train_loader, print_freq, header)):
  1106. ni = iter_i + self.epoch * epoch_size
  1107. # Warmup
  1108. if ni <= nw:
  1109. xi = [0, nw] # x interp
  1110. for x in self.optimizer.param_groups:
  1111. x['lr'] = np.interp(ni, xi, [0.0, x['initial_lr'] * self.lf(self.epoch)])
  1112. # To device
  1113. images = images.to(self.device, non_blocking=True).float()
  1114. # Multi scale
  1115. if self.args.multi_scale:
  1116. images, targets, img_size = self.rescale_image_targets(
  1117. images, targets, self.model_cfg['max_stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
  1118. else:
  1119. targets = self.refine_targets(img_size, targets, self.args.min_box_size)
  1120. # xyxy -> cxcywh
  1121. targets = self.box_xyxy_to_cxcywh(targets)
  1122. # Visualize train targets
  1123. if self.args.vis_tgt:
  1124. targets = self.box_cxcywh_to_xyxy(targets)
  1125. vis_data(images, targets, normalized_bbox=True,
  1126. pixel_mean=self.trans_cfg['pixel_mean'], pixel_std=self.trans_cfg['pixel_std'])
  1127. targets = self.box_xyxy_to_cxcywh(targets)
  1128. # Inference
  1129. with torch.cuda.amp.autocast(enabled=self.args.fp16):
  1130. outputs = model(images, targets)
  1131. # Compute loss
  1132. loss_dict = self.criterion(*outputs, targets)
  1133. losses = sum(loss_dict.values())
  1134. # Grad Accumulate
  1135. if self.grad_accumulate > 1:
  1136. losses /= self.grad_accumulate
  1137. loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
  1138. # Backward
  1139. self.scaler.scale(losses).backward()
  1140. # Optimize
  1141. if ni % self.grad_accumulate == 0:
  1142. grad_norm = None
  1143. if self.clip_grad > 0:
  1144. # unscale gradients
  1145. self.scaler.unscale_(self.optimizer)
  1146. # clip gradients
  1147. grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=self.clip_grad)
  1148. # optimizer.step
  1149. self.scaler.step(self.optimizer)
  1150. self.scaler.update()
  1151. self.optimizer.zero_grad()
  1152. # ema
  1153. if self.model_ema is not None:
  1154. self.model_ema.update(model)
  1155. # Update log
  1156. metric_logger.update(**loss_dict_reduced)
  1157. metric_logger.update(lr=self.optimizer.param_groups[2]["lr"])
  1158. metric_logger.update(grad_norm=grad_norm)
  1159. metric_logger.update(size=img_size)
  1160. if self.args.debug:
  1161. print("For debug mode, we only train 1 iteration")
  1162. break
  1163. # LR Schedule
  1164. if not self.second_stage:
  1165. self.lr_scheduler.step()
  1166. def refine_targets(self, img_size, targets, min_box_size):
  1167. # rescale targets
  1168. for tgt in targets:
  1169. boxes = tgt["boxes"].clone()
  1170. labels = tgt["labels"].clone()
  1171. # refine tgt
  1172. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  1173. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  1174. keep = (min_tgt_size >= min_box_size)
  1175. # normalize box
  1176. boxes[:, [0, 2]] = boxes[:, [0, 2]] / img_size
  1177. boxes[:, [1, 3]] = boxes[:, [1, 3]] / img_size
  1178. tgt["boxes"] = boxes[keep]
  1179. tgt["labels"] = labels[keep]
  1180. return targets
  1181. def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
  1182. """
  1183. Deployed for Multi scale trick.
  1184. """
  1185. if isinstance(stride, int):
  1186. max_stride = stride
  1187. elif isinstance(stride, list):
  1188. max_stride = max(stride)
  1189. # During training phase, the shape of input image is square.
  1190. old_img_size = images.shape[-1]
  1191. new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
  1192. new_img_size = new_img_size // max_stride * max_stride # size
  1193. if new_img_size / old_img_size != 1:
  1194. # interpolate
  1195. images = torch.nn.functional.interpolate(
  1196. input=images,
  1197. size=new_img_size,
  1198. mode='bilinear',
  1199. align_corners=False)
  1200. # rescale targets
  1201. for tgt in targets:
  1202. boxes = tgt["boxes"].clone()
  1203. labels = tgt["labels"].clone()
  1204. boxes = torch.clamp(boxes, 0, old_img_size)
  1205. # rescale box
  1206. boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
  1207. boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
  1208. # refine tgt
  1209. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  1210. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  1211. keep = (min_tgt_size >= min_box_size)
  1212. # normalize box
  1213. boxes[:, [0, 2]] = boxes[:, [0, 2]] / new_img_size
  1214. boxes[:, [1, 3]] = boxes[:, [1, 3]] / new_img_size
  1215. tgt["boxes"] = boxes[keep]
  1216. tgt["labels"] = labels[keep]
  1217. return images, targets, new_img_size
  1218. def box_xyxy_to_cxcywh(self, targets):
  1219. # rescale targets
  1220. for tgt in targets:
  1221. boxes_xyxy = tgt["boxes"].clone()
  1222. # rescale box
  1223. cxcy = (boxes_xyxy[..., :2] + boxes_xyxy[..., 2:]) * 0.5
  1224. bwbh = boxes_xyxy[..., 2:] - boxes_xyxy[..., :2]
  1225. boxes_bwbh = torch.cat([cxcy, bwbh], dim=-1)
  1226. tgt["boxes"] = boxes_bwbh
  1227. return targets
  1228. def box_cxcywh_to_xyxy(self, targets):
  1229. # rescale targets
  1230. for tgt in targets:
  1231. boxes_cxcywh = tgt["boxes"].clone()
  1232. # rescale box
  1233. x1y1 = boxes_cxcywh[..., :2] - boxes_cxcywh[..., 2:] * 0.5
  1234. x2y2 = boxes_cxcywh[..., :2] + boxes_cxcywh[..., 2:] * 0.5
  1235. boxes_bwbh = torch.cat([x1y1, x2y2], dim=-1)
  1236. tgt["boxes"] = boxes_bwbh
  1237. return targets
  1238. def check_second_stage(self):
  1239. # set second stage
  1240. print('============== Second stage of Training ==============')
  1241. self.second_stage = True
  1242. # close mosaic augmentation
  1243. if self.train_loader.dataset.mosaic_prob > 0.:
  1244. print(' - Close < Mosaic Augmentation > ...')
  1245. self.train_loader.dataset.mosaic_prob = 0.
  1246. self.heavy_eval = True
  1247. # close mixup augmentation
  1248. if self.train_loader.dataset.mixup_prob > 0.:
  1249. print(' - Close < Mixup Augmentation > ...')
  1250. self.train_loader.dataset.mixup_prob = 0.
  1251. self.heavy_eval = True
  1252. # close rotation augmentation
  1253. if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
  1254. print(' - Close < degress of rotation > ...')
  1255. self.trans_cfg['degrees'] = 0.0
  1256. if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
  1257. print(' - Close < shear of rotation >...')
  1258. self.trans_cfg['shear'] = 0.0
  1259. if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
  1260. print(' - Close < perspective of rotation > ...')
  1261. self.trans_cfg['perspective'] = 0.0
  1262. # build a new transform for second stage
  1263. print(' - Rebuild transforms ...')
  1264. self.train_transform, self.trans_cfg = build_transform(
  1265. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  1266. self.train_transform.set_weak_augment()
  1267. self.train_loader.dataset.transform = self.train_transform
  1268. ## Real-time PlainDETR Trainer
  1269. class RTPDetrTrainer(object):
  1270. def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
  1271. # ------------------- Basic parameters -------------------
  1272. self.args = args
  1273. self.epoch = 0
  1274. self.best_map = -1.
  1275. self.device = device
  1276. self.criterion = criterion
  1277. self.world_size = world_size
  1278. self.grad_accumulate = args.grad_accumulate
  1279. self.clip_grad = 0.1
  1280. self.heavy_eval = False
  1281. # close AMP for RT-DETR
  1282. self.args.fp16 = False
  1283. # weak augmentatino stage
  1284. self.second_stage = False
  1285. self.second_stage_epoch = -1
  1286. # path to save model
  1287. self.path_to_save = os.path.join(args.save_folder, args.dataset, args.model)
  1288. os.makedirs(self.path_to_save, exist_ok=True)
  1289. # ---------------------------- Hyperparameters refer to RTMDet ----------------------------
  1290. self.optimizer_dict = {'optimizer': 'adamw', 'momentum': None, 'weight_decay': 1e-4, 'lr0': 0.0001, 'backbone_lr_ratio': 0.1}
  1291. self.lr_schedule_dict = {'scheduler': 'cosine', 'lrf': 0.1, 'warmup_iters': 2000} # no lr decay
  1292. self.ema_dict = {'ema_decay': 0.9999, 'ema_tau': 2000}
  1293. # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
  1294. self.data_cfg = data_cfg
  1295. self.model_cfg = model_cfg
  1296. self.trans_cfg = trans_cfg
  1297. # ---------------------------- Build Transform ----------------------------
  1298. self.train_transform, self.trans_cfg = build_transform(
  1299. args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  1300. self.val_transform, _ = build_transform(
  1301. args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
  1302. if self.trans_cfg["mosaic_prob"] > 0.5:
  1303. self.second_stage_epoch = 5
  1304. # ---------------------------- Build Dataset & Dataloader ----------------------------
  1305. self.dataset, self.dataset_info = build_dataset(args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
  1306. self.train_loader = build_dataloader(args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
  1307. # ---------------------------- Build Evaluator ----------------------------
  1308. self.evaluator = build_evluator(args, self.data_cfg, self.val_transform, self.device)
  1309. # ---------------------------- Build Grad. Scaler ----------------------------
  1310. self.scaler = torch.cuda.amp.GradScaler(enabled=args.fp16)
  1311. # ---------------------------- Build Optimizer ----------------------------
  1312. self.optimizer_dict['lr0'] *= self.args.batch_size / 16. # auto lr scaling
  1313. self.optimizer, self.start_epoch = build_rtdetr_optimizer(self.optimizer_dict, model, self.args.resume)
  1314. # ---------------------------- Build LR Scheduler ----------------------------
  1315. self.lr_scheduler, self.lf = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, args.max_epoch)
  1316. self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
  1317. if self.args.resume and self.args.resume != 'None':
  1318. self.lr_scheduler.step()
  1319. # ---------------------------- Build Model-EMA ----------------------------
  1320. if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
  1321. print('Build ModelEMA ...')
  1322. self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
  1323. else:
  1324. self.model_ema = None
  1325. def train(self, model):
  1326. for epoch in range(self.start_epoch, self.args.max_epoch):
  1327. if self.args.distributed:
  1328. self.train_loader.batch_sampler.sampler.set_epoch(epoch)
  1329. # check second stage
  1330. if epoch >= (self.args.max_epoch - self.second_stage_epoch - 1) and not self.second_stage:
  1331. self.check_second_stage()
  1332. # save model of the last mosaic epoch
  1333. weight_name = '{}_last_mosaic_epoch.pth'.format(self.args.model)
  1334. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  1335. print('Saving state of the last Mosaic epoch-{}.'.format(self.epoch))
  1336. torch.save({'model': model.state_dict(),
  1337. 'mAP': round(self.evaluator.map*100, 1),
  1338. 'optimizer': self.optimizer.state_dict(),
  1339. 'epoch': self.epoch,
  1340. 'args': self.args},
  1341. checkpoint_path)
  1342. # train one epoch
  1343. self.epoch = epoch
  1344. self.train_one_epoch(model)
  1345. # eval one epoch
  1346. if self.heavy_eval:
  1347. model_eval = model.module if self.args.distributed else model
  1348. self.eval(model_eval)
  1349. else:
  1350. model_eval = model.module if self.args.distributed else model
  1351. if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
  1352. self.eval(model_eval)
  1353. if self.args.debug:
  1354. print("For debug mode, we only train 1 epoch")
  1355. break
  1356. def eval(self, model):
  1357. # chech model
  1358. model_eval = model if self.model_ema is None else self.model_ema.ema
  1359. if distributed_utils.is_main_process():
  1360. # check evaluator
  1361. if self.evaluator is None:
  1362. print('No evaluator ... save model and go on training.')
  1363. print('Saving state, epoch: {}'.format(self.epoch))
  1364. weight_name = '{}_no_eval.pth'.format(self.args.model)
  1365. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  1366. torch.save({'model': model_eval.state_dict(),
  1367. 'mAP': -1.,
  1368. 'optimizer': self.optimizer.state_dict(),
  1369. 'epoch': self.epoch,
  1370. 'args': self.args},
  1371. checkpoint_path)
  1372. else:
  1373. print('eval ...')
  1374. # set eval mode
  1375. model_eval.eval()
  1376. # evaluate
  1377. with torch.no_grad():
  1378. self.evaluator.evaluate(model_eval)
  1379. # save model
  1380. cur_map = self.evaluator.map
  1381. if cur_map > self.best_map:
  1382. # update best-map
  1383. self.best_map = cur_map
  1384. # save model
  1385. print('Saving state, epoch:', self.epoch)
  1386. weight_name = '{}_best.pth'.format(self.args.model)
  1387. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  1388. torch.save({'model': model_eval.state_dict(),
  1389. 'mAP': round(self.best_map*100, 1),
  1390. 'optimizer': self.optimizer.state_dict(),
  1391. 'epoch': self.epoch,
  1392. 'args': self.args},
  1393. checkpoint_path)
  1394. # set train mode.
  1395. model_eval.train()
  1396. if self.args.distributed:
  1397. # wait for all processes to synchronize
  1398. dist.barrier()
  1399. def train_one_epoch(self, model):
  1400. metric_logger = MetricLogger(delimiter=" ")
  1401. metric_logger.add_meter('lr', SmoothedValue(window_size=1, fmt='{value:.6f}'))
  1402. metric_logger.add_meter('size', SmoothedValue(window_size=1, fmt='{value:d}'))
  1403. metric_logger.add_meter('grad_norm', SmoothedValue(window_size=1, fmt='{value:.1f}'))
  1404. header = 'Epoch: [{} / {}]'.format(self.epoch, self.args.max_epoch)
  1405. epoch_size = len(self.train_loader)
  1406. print_freq = 10
  1407. # basic parameters
  1408. epoch_size = len(self.train_loader)
  1409. img_size = self.args.img_size
  1410. nw = self.lr_schedule_dict['warmup_iters']
  1411. # Train one epoch
  1412. for iter_i, (images, targets) in enumerate(metric_logger.log_every(self.train_loader, print_freq, header)):
  1413. ni = iter_i + self.epoch * epoch_size
  1414. # Warmup
  1415. if ni <= nw:
  1416. xi = [0, nw] # x interp
  1417. for x in self.optimizer.param_groups:
  1418. x['lr'] = np.interp(ni, xi, [0.0, x['initial_lr'] * self.lf(self.epoch)])
  1419. # To device
  1420. images = images.to(self.device, non_blocking=True).float()
  1421. # Multi scale
  1422. if self.args.multi_scale:
  1423. images, targets, img_size = self.rescale_image_targets(
  1424. images, targets, self.model_cfg['max_stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
  1425. else:
  1426. targets = self.refine_targets(img_size, targets, self.args.min_box_size)
  1427. # xyxy -> cxcywh
  1428. targets = self.box_xyxy_to_cxcywh(targets)
  1429. # Visualize train targets
  1430. if self.args.vis_tgt:
  1431. targets = self.box_cxcywh_to_xyxy(targets)
  1432. vis_data(images, targets, pixel_mean=self.trans_cfg['pixel_mean'], pixel_std=self.trans_cfg['pixel_std'])
  1433. targets = self.box_xyxy_to_cxcywh(targets)
  1434. # Inference
  1435. with torch.cuda.amp.autocast(enabled=self.args.fp16):
  1436. outputs = model(images)
  1437. # Compute loss
  1438. loss_dict = self.criterion(outputs, targets)
  1439. loss_weight_dict = self.criterion.weight_dict
  1440. losses = sum(loss_dict[k] * loss_weight_dict[k] for k in loss_dict.keys() if k in loss_weight_dict)
  1441. # Grad Accumulate
  1442. if self.grad_accumulate > 1:
  1443. losses /= self.grad_accumulate
  1444. # Reduce losses over all GPUs for logging purposes
  1445. loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
  1446. loss_dict_reduced_scaled = {k: v * loss_weight_dict[k] for k, v in loss_dict_reduced.items() if k in loss_weight_dict}
  1447. losses_reduced_scaled = sum(loss_dict_reduced_scaled.values())
  1448. loss_value = losses_reduced_scaled.item()
  1449. # Backward
  1450. self.scaler.scale(losses).backward()
  1451. # Optimize
  1452. if ni % self.grad_accumulate == 0:
  1453. grad_norm = None
  1454. if self.clip_grad > 0:
  1455. # unscale gradients
  1456. self.scaler.unscale_(self.optimizer)
  1457. # clip gradients
  1458. grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=self.clip_grad)
  1459. # optimizer.step
  1460. self.scaler.step(self.optimizer)
  1461. self.scaler.update()
  1462. self.optimizer.zero_grad()
  1463. # ema
  1464. if self.model_ema is not None:
  1465. self.model_ema.update(model)
  1466. # Update log
  1467. metric_logger.update(loss=loss_value, **loss_dict_reduced_scaled)
  1468. metric_logger.update(lr=self.optimizer.param_groups[2]["lr"])
  1469. metric_logger.update(grad_norm=grad_norm)
  1470. metric_logger.update(size=img_size)
  1471. if self.args.debug:
  1472. print("For debug mode, we only train 1 iteration")
  1473. break
  1474. # LR Schedule
  1475. if not self.second_stage:
  1476. self.lr_scheduler.step()
  1477. def refine_targets(self, img_size, targets, min_box_size):
  1478. # rescale targets
  1479. for tgt in targets:
  1480. boxes = tgt["boxes"].clone()
  1481. labels = tgt["labels"].clone()
  1482. # refine tgt
  1483. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  1484. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  1485. keep = (min_tgt_size >= min_box_size)
  1486. tgt["boxes"] = boxes[keep]
  1487. tgt["labels"] = labels[keep]
  1488. return targets
  1489. def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
  1490. """
  1491. Deployed for Multi scale trick.
  1492. """
  1493. if isinstance(stride, int):
  1494. max_stride = stride
  1495. elif isinstance(stride, list):
  1496. max_stride = max(stride)
  1497. # During training phase, the shape of input image is square.
  1498. old_img_size = images.shape[-1]
  1499. new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
  1500. new_img_size = new_img_size // max_stride * max_stride # size
  1501. if new_img_size / old_img_size != 1:
  1502. # interpolate
  1503. images = torch.nn.functional.interpolate(
  1504. input=images,
  1505. size=new_img_size,
  1506. mode='bilinear',
  1507. align_corners=False)
  1508. # rescale targets
  1509. for tgt in targets:
  1510. boxes = tgt["boxes"].clone()
  1511. labels = tgt["labels"].clone()
  1512. boxes = torch.clamp(boxes, 0, old_img_size)
  1513. # rescale box
  1514. boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
  1515. boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
  1516. # refine tgt
  1517. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  1518. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  1519. keep = (min_tgt_size >= min_box_size)
  1520. tgt["boxes"] = boxes[keep]
  1521. tgt["labels"] = labels[keep]
  1522. return images, targets, new_img_size
  1523. def box_xyxy_to_cxcywh(self, targets):
  1524. # rescale targets
  1525. for tgt in targets:
  1526. boxes_xyxy = tgt["boxes"].clone()
  1527. # rescale box
  1528. cxcy = (boxes_xyxy[..., :2] + boxes_xyxy[..., 2:]) * 0.5
  1529. bwbh = boxes_xyxy[..., 2:] - boxes_xyxy[..., :2]
  1530. boxes_bwbh = torch.cat([cxcy, bwbh], dim=-1)
  1531. tgt["boxes"] = boxes_bwbh
  1532. return targets
  1533. def box_cxcywh_to_xyxy(self, targets):
  1534. # rescale targets
  1535. for tgt in targets:
  1536. boxes_cxcywh = tgt["boxes"].clone()
  1537. # rescale box
  1538. x1y1 = boxes_cxcywh[..., :2] - boxes_cxcywh[..., 2:] * 0.5
  1539. x2y2 = boxes_cxcywh[..., :2] + boxes_cxcywh[..., 2:] * 0.5
  1540. boxes_bwbh = torch.cat([x1y1, x2y2], dim=-1)
  1541. tgt["boxes"] = boxes_bwbh
  1542. return targets
  1543. def check_second_stage(self):
  1544. # set second stage
  1545. print('============== Second stage of Training ==============')
  1546. self.second_stage = True
  1547. # close mosaic augmentation
  1548. if self.train_loader.dataset.mosaic_prob > 0.:
  1549. print(' - Close < Mosaic Augmentation > ...')
  1550. self.train_loader.dataset.mosaic_prob = 0.
  1551. self.heavy_eval = True
  1552. # close mixup augmentation
  1553. if self.train_loader.dataset.mixup_prob > 0.:
  1554. print(' - Close < Mixup Augmentation > ...')
  1555. self.train_loader.dataset.mixup_prob = 0.
  1556. self.heavy_eval = True
  1557. # close rotation augmentation
  1558. if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
  1559. print(' - Close < degress of rotation > ...')
  1560. self.trans_cfg['degrees'] = 0.0
  1561. if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
  1562. print(' - Close < shear of rotation >...')
  1563. self.trans_cfg['shear'] = 0.0
  1564. if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
  1565. print(' - Close < perspective of rotation > ...')
  1566. self.trans_cfg['perspective'] = 0.0
  1567. # build a new transform for second stage
  1568. print(' - Rebuild transforms ...')
  1569. self.train_transform, self.trans_cfg = build_transform(
  1570. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  1571. self.train_transform.set_weak_augment()
  1572. self.train_loader.dataset.transform = self.train_transform
  1573. # ----------------------- Det + Seg trainers -----------------------
  1574. ## RTCDet Trainer for Det + Seg
  1575. class RTCTrainerDS(object):
  1576. def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
  1577. # ------------------- basic parameters -------------------
  1578. self.args = args
  1579. self.epoch = 0
  1580. self.best_map = -1.
  1581. self.device = device
  1582. self.criterion = criterion
  1583. self.world_size = world_size
  1584. self.grad_accumulate = args.grad_accumulate
  1585. self.clip_grad = 35
  1586. self.heavy_eval = False
  1587. # weak augmentatino stage
  1588. self.second_stage = False
  1589. self.third_stage = False
  1590. self.second_stage_epoch = args.no_aug_epoch
  1591. self.third_stage_epoch = args.no_aug_epoch // 2
  1592. # path to save model
  1593. self.path_to_save = os.path.join(args.save_folder, args.dataset, args.model)
  1594. os.makedirs(self.path_to_save, exist_ok=True)
  1595. # ---------------------------- Hyperparameters refer to RTMDet ----------------------------
  1596. self.optimizer_dict = {'optimizer': 'adamw', 'momentum': None, 'weight_decay': 5e-2, 'lr0': 0.001}
  1597. self.ema_dict = {'ema_decay': 0.9998, 'ema_tau': 2000}
  1598. self.lr_schedule_dict = {'scheduler': 'linear', 'lrf': 0.01}
  1599. self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}
  1600. # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
  1601. self.data_cfg = data_cfg
  1602. self.model_cfg = model_cfg
  1603. self.trans_cfg = trans_cfg
  1604. # ---------------------------- Build Transform ----------------------------
  1605. self.train_transform, self.trans_cfg = build_transform(
  1606. args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  1607. self.val_transform, _ = build_transform(
  1608. args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
  1609. # ---------------------------- Build Dataset & Dataloader ----------------------------
  1610. self.dataset, self.dataset_info = build_dataset(args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
  1611. self.train_loader = build_dataloader(args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
  1612. # ---------------------------- Build Evaluator ----------------------------
  1613. self.evaluator = build_evluator(args, self.data_cfg, self.val_transform, self.device)
  1614. # ---------------------------- Build Grad. Scaler ----------------------------
  1615. self.scaler = torch.cuda.amp.GradScaler(enabled=args.fp16)
  1616. # ---------------------------- Build Optimizer ----------------------------
  1617. self.optimizer_dict['lr0'] *= args.batch_size * self.grad_accumulate / 64
  1618. self.optimizer, self.start_epoch = build_yolo_optimizer(self.optimizer_dict, model, args.resume)
  1619. # ---------------------------- Build LR Scheduler ----------------------------
  1620. self.lr_scheduler, self.lf = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, args.max_epoch - args.no_aug_epoch)
  1621. self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
  1622. if self.args.resume and self.args.resume != 'None':
  1623. self.lr_scheduler.step()
  1624. # ---------------------------- Build Model-EMA ----------------------------
  1625. if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
  1626. print('Build ModelEMA ...')
  1627. self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
  1628. else:
  1629. self.model_ema = None
  1630. def train(self, model):
  1631. for epoch in range(self.start_epoch, self.args.max_epoch):
  1632. if self.args.distributed:
  1633. self.train_loader.batch_sampler.sampler.set_epoch(epoch)
  1634. # check second stage
  1635. if epoch >= (self.args.max_epoch - self.second_stage_epoch - 1) and not self.second_stage:
  1636. self.check_second_stage()
  1637. # save model of the last mosaic epoch
  1638. weight_name = '{}_last_mosaic_epoch.pth'.format(self.args.model)
  1639. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  1640. print('Saving state of the last Mosaic epoch-{}.'.format(self.epoch))
  1641. torch.save({'model': model.state_dict(),
  1642. 'mAP': round(self.evaluator.map*100, 1),
  1643. 'optimizer': self.optimizer.state_dict(),
  1644. 'epoch': self.epoch,
  1645. 'args': self.args},
  1646. checkpoint_path)
  1647. # check third stage
  1648. if epoch >= (self.args.max_epoch - self.third_stage_epoch - 1) and not self.third_stage:
  1649. self.check_third_stage()
  1650. # save model of the last mosaic epoch
  1651. weight_name = '{}_last_weak_augment_epoch.pth'.format(self.args.model)
  1652. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  1653. print('Saving state of the last weak augment epoch-{}.'.format(self.epoch))
  1654. torch.save({'model': model.state_dict(),
  1655. 'mAP': round(self.evaluator.map*100, 1),
  1656. 'optimizer': self.optimizer.state_dict(),
  1657. 'epoch': self.epoch,
  1658. 'args': self.args},
  1659. checkpoint_path)
  1660. # train one epoch
  1661. self.epoch = epoch
  1662. self.train_one_epoch(model)
  1663. # eval one epoch
  1664. if self.heavy_eval:
  1665. model_eval = model.module if self.args.distributed else model
  1666. self.eval(model_eval)
  1667. else:
  1668. model_eval = model.module if self.args.distributed else model
  1669. if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
  1670. self.eval(model_eval)
  1671. if self.args.debug:
  1672. print("For debug mode, we only train 1 epoch")
  1673. break
  1674. def eval(self, model):
  1675. # chech model
  1676. model_eval = model if self.model_ema is None else self.model_ema.ema
  1677. if distributed_utils.is_main_process():
  1678. # check evaluator
  1679. if self.evaluator is None:
  1680. print('No evaluator ... save model and go on training.')
  1681. print('Saving state, epoch: {}'.format(self.epoch))
  1682. weight_name = '{}_no_eval.pth'.format(self.args.model)
  1683. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  1684. torch.save({'model': model_eval.state_dict(),
  1685. 'mAP': -1.,
  1686. 'optimizer': self.optimizer.state_dict(),
  1687. 'epoch': self.epoch,
  1688. 'args': self.args},
  1689. checkpoint_path)
  1690. else:
  1691. print('eval ...')
  1692. # set eval mode
  1693. model_eval.trainable = False
  1694. model_eval.eval()
  1695. # evaluate
  1696. with torch.no_grad():
  1697. self.evaluator.evaluate(model_eval)
  1698. # save model
  1699. cur_map = self.evaluator.map
  1700. if cur_map > self.best_map:
  1701. # update best-map
  1702. self.best_map = cur_map
  1703. # save model
  1704. print('Saving state, epoch:', self.epoch)
  1705. weight_name = '{}_best.pth'.format(self.args.model)
  1706. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  1707. torch.save({'model': model_eval.state_dict(),
  1708. 'mAP': round(self.best_map*100, 1),
  1709. 'optimizer': self.optimizer.state_dict(),
  1710. 'epoch': self.epoch,
  1711. 'args': self.args},
  1712. checkpoint_path)
  1713. # set train mode.
  1714. model_eval.trainable = True
  1715. model_eval.train()
  1716. if self.args.distributed:
  1717. # wait for all processes to synchronize
  1718. dist.barrier()
  1719. def train_one_epoch(self, model):
  1720. metric_logger = MetricLogger(delimiter=" ")
  1721. metric_logger.add_meter('lr', SmoothedValue(window_size=1, fmt='{value:.6f}'))
  1722. metric_logger.add_meter('size', SmoothedValue(window_size=1, fmt='{value:d}'))
  1723. header = 'Epoch: [{} / {}]'.format(self.epoch, self.args.max_epoch)
  1724. epoch_size = len(self.train_loader)
  1725. print_freq = 10
  1726. # basic parameters
  1727. epoch_size = len(self.train_loader)
  1728. img_size = self.args.img_size
  1729. nw = epoch_size * self.args.wp_epoch
  1730. # Train one epoch
  1731. for iter_i, (images, targets) in enumerate(metric_logger.log_every(self.train_loader, print_freq, header)):
  1732. ni = iter_i + self.epoch * epoch_size
  1733. # Warmup
  1734. if ni <= nw:
  1735. xi = [0, nw] # x interp
  1736. for j, x in enumerate(self.optimizer.param_groups):
  1737. # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
  1738. x['lr'] = np.interp(
  1739. ni, xi, [self.warmup_dict['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * self.lf(self.epoch)])
  1740. if 'momentum' in x:
  1741. x['momentum'] = np.interp(ni, xi, [self.warmup_dict['warmup_momentum'], self.optimizer_dict['momentum']])
  1742. # To device
  1743. images = images.to(self.device, non_blocking=True).float()
  1744. # Multi scale
  1745. if self.args.multi_scale:
  1746. images, targets, img_size = self.rescale_image_targets(
  1747. images, targets, self.model_cfg['stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
  1748. else:
  1749. targets = self.refine_targets(targets, self.args.min_box_size)
  1750. # Visualize train targets
  1751. if self.args.vis_tgt:
  1752. vis_data(images*255, targets, self.data_cfg['num_classes'])
  1753. # Inference
  1754. with torch.cuda.amp.autocast(enabled=self.args.fp16):
  1755. outputs = model(images)
  1756. # Compute loss
  1757. loss_dict = self.criterion(outputs=outputs, targets=targets, epoch=self.epoch, task='det_seg')
  1758. det_loss_dict = loss_dict['det_loss_dict']
  1759. seg_loss_dict = loss_dict['seg_loss_dict']
  1760. # TODO: finish the backward + optimize
  1761. # # Update log
  1762. # metric_logger.update(**loss_dict_reduced)
  1763. # metric_logger.update(lr=self.optimizer.param_groups[2]["lr"])
  1764. # metric_logger.update(grad_norm=grad_norm)
  1765. # metric_logger.update(size=img_size)
  1766. if self.args.debug:
  1767. print("For debug mode, we only train 1 iteration")
  1768. break
  1769. # LR Schedule
  1770. if not self.second_stage:
  1771. self.lr_scheduler.step()
  1772. # Gather the stats from all processes
  1773. metric_logger.synchronize_between_processes()
  1774. print("Averaged stats:", metric_logger)
  1775. def refine_targets(self, targets, min_box_size):
  1776. # rescale targets
  1777. for tgt in targets:
  1778. boxes = tgt["boxes"].clone()
  1779. labels = tgt["labels"].clone()
  1780. # refine tgt
  1781. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  1782. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  1783. keep = (min_tgt_size >= min_box_size)
  1784. tgt["boxes"] = boxes[keep]
  1785. tgt["labels"] = labels[keep]
  1786. return targets
  1787. def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
  1788. """
  1789. Deployed for Multi scale trick.
  1790. """
  1791. if isinstance(stride, int):
  1792. max_stride = stride
  1793. elif isinstance(stride, list):
  1794. max_stride = max(stride)
  1795. # During training phase, the shape of input image is square.
  1796. old_img_size = images.shape[-1]
  1797. new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
  1798. new_img_size = new_img_size // max_stride * max_stride # size
  1799. if new_img_size / old_img_size != 1:
  1800. # interpolate
  1801. images = torch.nn.functional.interpolate(
  1802. input=images,
  1803. size=new_img_size,
  1804. mode='bilinear',
  1805. align_corners=False)
  1806. # rescale targets
  1807. for tgt in targets:
  1808. boxes = tgt["boxes"].clone()
  1809. labels = tgt["labels"].clone()
  1810. boxes = torch.clamp(boxes, 0, old_img_size)
  1811. # rescale box
  1812. boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
  1813. boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
  1814. # refine tgt
  1815. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  1816. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  1817. keep = (min_tgt_size >= min_box_size)
  1818. tgt["boxes"] = boxes[keep]
  1819. tgt["labels"] = labels[keep]
  1820. return images, targets, new_img_size
  1821. def check_second_stage(self):
  1822. # set second stage
  1823. print('============== Second stage of Training ==============')
  1824. self.second_stage = True
  1825. # close mosaic augmentation
  1826. if self.train_loader.dataset.mosaic_prob > 0.:
  1827. print(' - Close < Mosaic Augmentation > ...')
  1828. self.train_loader.dataset.mosaic_prob = 0.
  1829. self.heavy_eval = True
  1830. # close mixup augmentation
  1831. if self.train_loader.dataset.mixup_prob > 0.:
  1832. print(' - Close < Mixup Augmentation > ...')
  1833. self.train_loader.dataset.mixup_prob = 0.
  1834. self.heavy_eval = True
  1835. # close rotation augmentation
  1836. if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
  1837. print(' - Close < degress of rotation > ...')
  1838. self.trans_cfg['degrees'] = 0.0
  1839. if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
  1840. print(' - Close < shear of rotation >...')
  1841. self.trans_cfg['shear'] = 0.0
  1842. if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
  1843. print(' - Close < perspective of rotation > ...')
  1844. self.trans_cfg['perspective'] = 0.0
  1845. # build a new transform for second stage
  1846. print(' - Rebuild transforms ...')
  1847. self.train_transform, self.trans_cfg = build_transform(
  1848. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  1849. self.train_loader.dataset.transform = self.train_transform
  1850. def check_third_stage(self):
  1851. # set third stage
  1852. print('============== Third stage of Training ==============')
  1853. self.third_stage = True
  1854. # close random affine
  1855. if 'translate' in self.trans_cfg.keys() and self.trans_cfg['translate'] > 0.0:
  1856. print(' - Close < translate of affine > ...')
  1857. self.trans_cfg['translate'] = 0.0
  1858. if 'scale' in self.trans_cfg.keys():
  1859. print(' - Close < scale of affine >...')
  1860. self.trans_cfg['scale'] = [1.0, 1.0]
  1861. # build a new transform for second stage
  1862. print(' - Rebuild transforms ...')
  1863. self.train_transform, self.trans_cfg = build_transform(
  1864. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  1865. self.train_loader.dataset.transform = self.train_transform
  1866. # ----------------------- Det + Seg + Pos trainers -----------------------
  1867. ## RTCDet Trainer for Det + Seg + HumanPose
  1868. class RTCTrainerDSP(object):
  1869. def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
  1870. # ------------------- basic parameters -------------------
  1871. self.args = args
  1872. self.epoch = 0
  1873. self.best_map = -1.
  1874. self.device = device
  1875. self.criterion = criterion
  1876. self.world_size = world_size
  1877. self.grad_accumulate = args.grad_accumulate
  1878. self.clip_grad = 35
  1879. self.heavy_eval = False
  1880. # weak augmentatino stage
  1881. self.second_stage = False
  1882. self.third_stage = False
  1883. self.second_stage_epoch = args.no_aug_epoch
  1884. self.third_stage_epoch = args.no_aug_epoch // 2
  1885. # path to save model
  1886. self.path_to_save = os.path.join(args.save_folder, args.dataset, args.model)
  1887. os.makedirs(self.path_to_save, exist_ok=True)
  1888. # ---------------------------- Hyperparameters refer to RTMDet ----------------------------
  1889. self.optimizer_dict = {'optimizer': 'adamw', 'momentum': None, 'weight_decay': 5e-2, 'lr0': 0.001}
  1890. self.ema_dict = {'ema_decay': 0.9998, 'ema_tau': 2000}
  1891. self.lr_schedule_dict = {'scheduler': 'linear', 'lrf': 0.01}
  1892. self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}
  1893. # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
  1894. self.data_cfg = data_cfg
  1895. self.model_cfg = model_cfg
  1896. self.trans_cfg = trans_cfg
  1897. # ---------------------------- Build Transform ----------------------------
  1898. self.train_transform, self.trans_cfg = build_transform(
  1899. args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  1900. self.val_transform, _ = build_transform(
  1901. args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
  1902. # ---------------------------- Build Dataset & Dataloader ----------------------------
  1903. self.dataset, self.dataset_info = build_dataset(args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
  1904. self.train_loader = build_dataloader(args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
  1905. # ---------------------------- Build Evaluator ----------------------------
  1906. self.evaluator = build_evluator(args, self.data_cfg, self.val_transform, self.device)
  1907. # ---------------------------- Build Grad. Scaler ----------------------------
  1908. self.scaler = torch.cuda.amp.GradScaler(enabled=args.fp16)
  1909. # ---------------------------- Build Optimizer ----------------------------
  1910. self.optimizer_dict['lr0'] *= args.batch_size * self.grad_accumulate / 64
  1911. self.optimizer, self.start_epoch = build_yolo_optimizer(self.optimizer_dict, model, args.resume)
  1912. # ---------------------------- Build LR Scheduler ----------------------------
  1913. self.lr_scheduler, self.lf = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, args.max_epoch - args.no_aug_epoch)
  1914. self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
  1915. if self.args.resume and self.args.resume != 'None':
  1916. self.lr_scheduler.step()
  1917. # ---------------------------- Build Model-EMA ----------------------------
  1918. if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
  1919. print('Build ModelEMA ...')
  1920. self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
  1921. else:
  1922. self.model_ema = None
  1923. def train(self, model):
  1924. for epoch in range(self.start_epoch, self.args.max_epoch):
  1925. if self.args.distributed:
  1926. self.train_loader.batch_sampler.sampler.set_epoch(epoch)
  1927. # check second stage
  1928. if epoch >= (self.args.max_epoch - self.second_stage_epoch - 1) and not self.second_stage:
  1929. self.check_second_stage()
  1930. # save model of the last mosaic epoch
  1931. weight_name = '{}_last_mosaic_epoch.pth'.format(self.args.model)
  1932. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  1933. print('Saving state of the last Mosaic epoch-{}.'.format(self.epoch))
  1934. torch.save({'model': model.state_dict(),
  1935. 'mAP': round(self.evaluator.map*100, 1),
  1936. 'optimizer': self.optimizer.state_dict(),
  1937. 'epoch': self.epoch,
  1938. 'args': self.args},
  1939. checkpoint_path)
  1940. # check third stage
  1941. if epoch >= (self.args.max_epoch - self.third_stage_epoch - 1) and not self.third_stage:
  1942. self.check_third_stage()
  1943. # save model of the last mosaic epoch
  1944. weight_name = '{}_last_weak_augment_epoch.pth'.format(self.args.model)
  1945. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  1946. print('Saving state of the last weak augment epoch-{}.'.format(self.epoch))
  1947. torch.save({'model': model.state_dict(),
  1948. 'mAP': round(self.evaluator.map*100, 1),
  1949. 'optimizer': self.optimizer.state_dict(),
  1950. 'epoch': self.epoch,
  1951. 'args': self.args},
  1952. checkpoint_path)
  1953. # train one epoch
  1954. self.epoch = epoch
  1955. self.train_one_epoch(model)
  1956. # eval one epoch
  1957. if self.heavy_eval:
  1958. model_eval = model.module if self.args.distributed else model
  1959. self.eval(model_eval)
  1960. else:
  1961. model_eval = model.module if self.args.distributed else model
  1962. if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
  1963. self.eval(model_eval)
  1964. if self.args.debug:
  1965. print("For debug mode, we only train 1 epoch")
  1966. break
  1967. def eval(self, model):
  1968. # chech model
  1969. model_eval = model if self.model_ema is None else self.model_ema.ema
  1970. if distributed_utils.is_main_process():
  1971. # check evaluator
  1972. if self.evaluator is None:
  1973. print('No evaluator ... save model and go on training.')
  1974. print('Saving state, epoch: {}'.format(self.epoch))
  1975. weight_name = '{}_no_eval.pth'.format(self.args.model)
  1976. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  1977. torch.save({'model': model_eval.state_dict(),
  1978. 'mAP': -1.,
  1979. 'optimizer': self.optimizer.state_dict(),
  1980. 'epoch': self.epoch,
  1981. 'args': self.args},
  1982. checkpoint_path)
  1983. else:
  1984. print('eval ...')
  1985. # set eval mode
  1986. model_eval.trainable = False
  1987. model_eval.eval()
  1988. # evaluate
  1989. with torch.no_grad():
  1990. self.evaluator.evaluate(model_eval)
  1991. # save model
  1992. cur_map = self.evaluator.map
  1993. if cur_map > self.best_map:
  1994. # update best-map
  1995. self.best_map = cur_map
  1996. # save model
  1997. print('Saving state, epoch:', self.epoch)
  1998. weight_name = '{}_best.pth'.format(self.args.model)
  1999. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  2000. torch.save({'model': model_eval.state_dict(),
  2001. 'mAP': round(self.best_map*100, 1),
  2002. 'optimizer': self.optimizer.state_dict(),
  2003. 'epoch': self.epoch,
  2004. 'args': self.args},
  2005. checkpoint_path)
  2006. # set train mode.
  2007. model_eval.trainable = True
  2008. model_eval.train()
  2009. if self.args.distributed:
  2010. # wait for all processes to synchronize
  2011. dist.barrier()
  2012. def train_one_epoch(self, model):
  2013. metric_logger = MetricLogger(delimiter=" ")
  2014. metric_logger.add_meter('lr', SmoothedValue(window_size=1, fmt='{value:.6f}'))
  2015. metric_logger.add_meter('size', SmoothedValue(window_size=1, fmt='{value:d}'))
  2016. header = 'Epoch: [{} / {}]'.format(self.epoch, self.args.max_epoch)
  2017. epoch_size = len(self.train_loader)
  2018. print_freq = 10
  2019. # basic parameters
  2020. epoch_size = len(self.train_loader)
  2021. img_size = self.args.img_size
  2022. nw = epoch_size * self.args.wp_epoch
  2023. # Train one epoch
  2024. for iter_i, (images, targets) in enumerate(metric_logger.log_every(self.train_loader, print_freq, header)):
  2025. ni = iter_i + self.epoch * epoch_size
  2026. # Warmup
  2027. if ni <= nw:
  2028. xi = [0, nw] # x interp
  2029. for j, x in enumerate(self.optimizer.param_groups):
  2030. # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
  2031. x['lr'] = np.interp(
  2032. ni, xi, [self.warmup_dict['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * self.lf(self.epoch)])
  2033. if 'momentum' in x:
  2034. x['momentum'] = np.interp(ni, xi, [self.warmup_dict['warmup_momentum'], self.optimizer_dict['momentum']])
  2035. # To device
  2036. images = images.to(self.device, non_blocking=True).float()
  2037. # Multi scale
  2038. if self.args.multi_scale:
  2039. images, targets, img_size = self.rescale_image_targets(
  2040. images, targets, self.model_cfg['stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
  2041. else:
  2042. targets = self.refine_targets(targets, self.args.min_box_size)
  2043. # Visualize train targets
  2044. if self.args.vis_tgt:
  2045. vis_data(images*255, targets, self.data_cfg['num_classes'])
  2046. # Inference
  2047. with torch.cuda.amp.autocast(enabled=self.args.fp16):
  2048. outputs = model(images)
  2049. # Compute loss
  2050. loss_dict = self.criterion(outputs=outputs, targets=targets, epoch=self.epoch, task='det_seg_pos')
  2051. det_loss_dict = loss_dict['det_loss_dict']
  2052. seg_loss_dict = loss_dict['seg_loss_dict']
  2053. pos_loss_dict = loss_dict['pos_loss_dict']
  2054. # TODO: finish the backward + optimize
  2055. # # Update log
  2056. # metric_logger.update(**loss_dict_reduced)
  2057. # metric_logger.update(lr=self.optimizer.param_groups[2]["lr"])
  2058. # metric_logger.update(grad_norm=grad_norm)
  2059. # metric_logger.update(size=img_size)
  2060. if self.args.debug:
  2061. print("For debug mode, we only train 1 iteration")
  2062. break
  2063. # LR Schedule
  2064. if not self.second_stage:
  2065. self.lr_scheduler.step()
  2066. # Gather the stats from all processes
  2067. metric_logger.synchronize_between_processes()
  2068. print("Averaged stats:", metric_logger)
  2069. def refine_targets(self, targets, min_box_size):
  2070. # rescale targets
  2071. for tgt in targets:
  2072. boxes = tgt["boxes"].clone()
  2073. labels = tgt["labels"].clone()
  2074. # refine tgt
  2075. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  2076. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  2077. keep = (min_tgt_size >= min_box_size)
  2078. tgt["boxes"] = boxes[keep]
  2079. tgt["labels"] = labels[keep]
  2080. return targets
  2081. def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
  2082. """
  2083. Deployed for Multi scale trick.
  2084. """
  2085. if isinstance(stride, int):
  2086. max_stride = stride
  2087. elif isinstance(stride, list):
  2088. max_stride = max(stride)
  2089. # During training phase, the shape of input image is square.
  2090. old_img_size = images.shape[-1]
  2091. new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
  2092. new_img_size = new_img_size // max_stride * max_stride # size
  2093. if new_img_size / old_img_size != 1:
  2094. # interpolate
  2095. images = torch.nn.functional.interpolate(
  2096. input=images,
  2097. size=new_img_size,
  2098. mode='bilinear',
  2099. align_corners=False)
  2100. # rescale targets
  2101. for tgt in targets:
  2102. boxes = tgt["boxes"].clone()
  2103. labels = tgt["labels"].clone()
  2104. boxes = torch.clamp(boxes, 0, old_img_size)
  2105. # rescale box
  2106. boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
  2107. boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
  2108. # refine tgt
  2109. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  2110. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  2111. keep = (min_tgt_size >= min_box_size)
  2112. tgt["boxes"] = boxes[keep]
  2113. tgt["labels"] = labels[keep]
  2114. return images, targets, new_img_size
  2115. def check_second_stage(self):
  2116. # set second stage
  2117. print('============== Second stage of Training ==============')
  2118. self.second_stage = True
  2119. # close mosaic augmentation
  2120. if self.train_loader.dataset.mosaic_prob > 0.:
  2121. print(' - Close < Mosaic Augmentation > ...')
  2122. self.train_loader.dataset.mosaic_prob = 0.
  2123. self.heavy_eval = True
  2124. # close mixup augmentation
  2125. if self.train_loader.dataset.mixup_prob > 0.:
  2126. print(' - Close < Mixup Augmentation > ...')
  2127. self.train_loader.dataset.mixup_prob = 0.
  2128. self.heavy_eval = True
  2129. # close rotation augmentation
  2130. if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
  2131. print(' - Close < degress of rotation > ...')
  2132. self.trans_cfg['degrees'] = 0.0
  2133. if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
  2134. print(' - Close < shear of rotation >...')
  2135. self.trans_cfg['shear'] = 0.0
  2136. if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
  2137. print(' - Close < perspective of rotation > ...')
  2138. self.trans_cfg['perspective'] = 0.0
  2139. # build a new transform for second stage
  2140. print(' - Rebuild transforms ...')
  2141. self.train_transform, self.trans_cfg = build_transform(
  2142. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  2143. self.train_loader.dataset.transform = self.train_transform
  2144. def check_third_stage(self):
  2145. # set third stage
  2146. print('============== Third stage of Training ==============')
  2147. self.third_stage = True
  2148. # close random affine
  2149. if 'translate' in self.trans_cfg.keys() and self.trans_cfg['translate'] > 0.0:
  2150. print(' - Close < translate of affine > ...')
  2151. self.trans_cfg['translate'] = 0.0
  2152. if 'scale' in self.trans_cfg.keys():
  2153. print(' - Close < scale of affine >...')
  2154. self.trans_cfg['scale'] = [1.0, 1.0]
  2155. # build a new transform for second stage
  2156. print(' - Rebuild transforms ...')
  2157. self.train_transform, self.trans_cfg = build_transform(
  2158. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  2159. self.train_loader.dataset.transform = self.train_transform
  2160. # Build Trainer
  2161. def build_trainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
  2162. # ----------------------- Det trainers -----------------------
  2163. if model_cfg['trainer_type'] == 'yolov8':
  2164. return Yolov8Trainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
  2165. elif model_cfg['trainer_type'] == 'yolox':
  2166. return YoloxTrainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
  2167. elif model_cfg['trainer_type'] == 'rtcdet':
  2168. return RTCTrainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
  2169. elif model_cfg['trainer_type'] == 'rtdetr':
  2170. return RTDetrTrainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
  2171. elif model_cfg['trainer_type'] == 'rtpdetr':
  2172. return RTPDetrTrainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
  2173. # ----------------------- Det + Seg trainers -----------------------
  2174. elif model_cfg['trainer_type'] == 'rtcdet_ds':
  2175. return RTCTrainerDS(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
  2176. # ----------------------- Det + Seg + Pos trainers -----------------------
  2177. elif model_cfg['trainer_type'] == 'rtcdet_dsp':
  2178. return RTCTrainerDSP(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
  2179. else:
  2180. raise NotImplementedError(model_cfg['trainer_type'])