import torch import numpy as np from torchvision.ops.boxes import box_area # modified from torchvision to also return the union def box_iou(boxes1, boxes2): area1 = box_area(boxes1) area2 = box_area(boxes2) lt = torch.max(boxes1[:, None, :2], boxes2[:, :2]) # [N,M,2] rb = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) # [N,M,2] wh = (rb - lt).clamp(min=0) # [N,M,2] inter = wh[:, :, 0] * wh[:, :, 1] # [N,M] union = area1[:, None] + area2 - inter iou = inter / union return iou, union def get_ious(bboxes1, bboxes2, box_mode="xyxy", iou_type="iou"): """ Compute iou loss of type ['iou', 'giou', 'linear_iou'] Args: inputs (tensor): pred values targets (tensor): target values weight (tensor): loss weight box_mode (str): 'xyxy' or 'ltrb', 'ltrb' is currently supported. loss_type (str): 'giou' or 'iou' or 'linear_iou' reduction (str): reduction manner Returns: loss (tensor): computed iou loss. """ if box_mode == "ltrb": bboxes1 = torch.cat((-bboxes1[..., :2], bboxes1[..., 2:]), dim=-1) bboxes2 = torch.cat((-bboxes2[..., :2], bboxes2[..., 2:]), dim=-1) elif box_mode != "xyxy": raise NotImplementedError eps = torch.finfo(torch.float32).eps bboxes1_area = (bboxes1[..., 2] - bboxes1[..., 0]).clamp_(min=0) \ * (bboxes1[..., 3] - bboxes1[..., 1]).clamp_(min=0) bboxes2_area = (bboxes2[..., 2] - bboxes2[..., 0]).clamp_(min=0) \ * (bboxes2[..., 3] - bboxes2[..., 1]).clamp_(min=0) w_intersect = (torch.min(bboxes1[..., 2], bboxes2[..., 2]) - torch.max(bboxes1[..., 0], bboxes2[..., 0])).clamp_(min=0) h_intersect = (torch.min(bboxes1[..., 3], bboxes2[..., 3]) - torch.max(bboxes1[..., 1], bboxes2[..., 1])).clamp_(min=0) area_intersect = w_intersect * h_intersect area_union = bboxes2_area + bboxes1_area - area_intersect ious = area_intersect / area_union.clamp(min=eps) if iou_type == "iou": return ious elif iou_type == "giou": g_w_intersect = torch.max(bboxes1[..., 2], bboxes2[..., 2]) \ - torch.min(bboxes1[..., 0], bboxes2[..., 0]) g_h_intersect = torch.max(bboxes1[..., 3], bboxes2[..., 3]) \ - torch.min(bboxes1[..., 1], bboxes2[..., 1]) ac_uion = g_w_intersect * g_h_intersect gious = ious - (ac_uion - area_union) / ac_uion.clamp(min=eps) return gious else: raise NotImplementedError def rescale_bboxes(bboxes, origin_img_size, cur_img_size, deltas=None): origin_h, origin_w = origin_img_size cur_img_h, cur_img_w = cur_img_size if deltas is None: # rescale bboxes[..., [0, 2]] = bboxes[..., [0, 2]] / cur_img_w * origin_w bboxes[..., [1, 3]] = bboxes[..., [1, 3]] / cur_img_h * origin_h # clip bboxes bboxes[..., [0, 2]] = np.clip(bboxes[..., [0, 2]], a_min=0., a_max=origin_w) bboxes[..., [1, 3]] = np.clip(bboxes[..., [1, 3]], a_min=0., a_max=origin_h) else: # rescale bboxes[..., [0, 2]] = bboxes[..., [0, 2]] / (cur_img_w - deltas[0]) * origin_w bboxes[..., [1, 3]] = bboxes[..., [1, 3]] / (cur_img_h - deltas[1]) * origin_h # clip bboxes bboxes[..., [0, 2]] = np.clip(bboxes[..., [0, 2]], a_min=0., a_max=origin_w) bboxes[..., [1, 3]] = np.clip(bboxes[..., [1, 3]], a_min=0., a_max=origin_h) return bboxes if __name__ == '__main__': box1 = torch.tensor([[10, 10, 20, 20]]) box2 = torch.tensor([[15, 15, 20, 20]]) iou = box_iou(box1, box2) print(iou)