import torch import torch.nn as nn from .yolov8_basic import Conv # Single-level Head class SingleLevelHead(nn.Module): def __init__(self, in_dim :int = 256, cls_head_dim :int = 256, reg_head_dim :int = 256, num_cls_head :int = 2, num_reg_head :int = 2, act_type :str = "silu", norm_type :str = "BN", depthwise :bool = False): super().__init__() # --------- Basic Parameters ---------- self.in_dim = in_dim self.num_cls_head = num_cls_head self.num_reg_head = num_reg_head self.act_type = act_type self.norm_type = norm_type self.depthwise = depthwise # --------- Network Parameters ---------- ## cls head cls_feats = [] self.cls_head_dim = cls_head_dim for i in range(num_cls_head): if i == 0: cls_feats.append( Conv(in_dim, self.cls_head_dim, k=3, p=1, s=1, act_type=act_type, norm_type=norm_type, depthwise=depthwise) ) else: cls_feats.append( Conv(self.cls_head_dim, self.cls_head_dim, k=3, p=1, s=1, act_type=act_type, norm_type=norm_type, depthwise=depthwise) ) ## reg head reg_feats = [] self.reg_head_dim = reg_head_dim for i in range(num_reg_head): if i == 0: reg_feats.append( Conv(in_dim, self.reg_head_dim, k=3, p=1, s=1, act_type=act_type, norm_type=norm_type, depthwise=depthwise) ) else: reg_feats.append( Conv(self.reg_head_dim, self.reg_head_dim, k=3, p=1, s=1, act_type=act_type, norm_type=norm_type, depthwise=depthwise) ) self.cls_feats = nn.Sequential(*cls_feats) self.reg_feats = nn.Sequential(*reg_feats) self.init_weights() def init_weights(self): """Initialize the parameters.""" for m in self.modules(): if isinstance(m, torch.nn.Conv2d): # In order to be consistent with the source code, # reset the Conv2d initialization parameters m.reset_parameters() def forward(self, x): """ in_feats: (Tensor) [B, C, H, W] """ cls_feats = self.cls_feats(x) reg_feats = self.reg_feats(x) return cls_feats, reg_feats # Multi-level Head class MultiLevelHead(nn.Module): def __init__(self, cfg, in_dims, num_levels=3, num_classes=80, reg_max=16): super().__init__() ## ----------- Network Parameters ----------- self.multi_level_heads = nn.ModuleList( [SingleLevelHead(in_dim = in_dims[level], cls_head_dim = max(in_dims[0], min(num_classes, 100)), reg_head_dim = max(in_dims[0]//4, 16, 4*reg_max), num_cls_head = cfg['num_cls_head'], num_reg_head = cfg['num_reg_head'], act_type = cfg['head_act'], norm_type = cfg['head_norm'], depthwise = cfg['head_depthwise']) for level in range(num_levels) ]) # --------- Basic Parameters ---------- self.in_dims = in_dims self.cls_head_dim = self.multi_level_heads[0].cls_head_dim self.reg_head_dim = self.multi_level_heads[0].reg_head_dim def forward(self, feats): """ feats: List[(Tensor)] [[B, C, H, W], ...] """ cls_feats = [] reg_feats = [] for feat, head in zip(feats, self.multi_level_heads): # ---------------- Pred ---------------- cls_feat, reg_feat = head(feat) cls_feats.append(cls_feat) reg_feats.append(reg_feat) return cls_feats, reg_feats # build detection head def build_det_head(cfg, in_dims, num_levels=3, num_classes=80, reg_max=16): if cfg['head'] == 'decoupled_head': head = MultiLevelHead(cfg, in_dims, num_levels, num_classes, reg_max) return head