# YOLOv5: | Model | Batch | Scale | APval
0.5:0.95 | APval
0.5 | FLOPs
(G) | Params
(M) | Weight | |-----------|-------|-------|------------------------|-------------------|-------------------|--------------------|--------| | YOLOv5-N | 8xb16 | 640 | | | | | | | YOLOv5-S | 8xb16 | 640 | 39.2 | 57.9 | 27.3 | 9.0 | [ckpt](https://github.com/yjh0410/RT-ODLab/releases/download/yolo_tutorial_ckpt/yolov5_s_coco_adamw.pth) | | YOLOv5-M | 8xb16 | 640 | | | | | | | YOLOv5-L | 8xb16 | 640 | | | | | | | YOLOv5-X | 8xb16 | 640 | | | | | | - For training, we train YOLOv5 series with 300 epochs on COCO. - For data augmentation, we use the large scale jitter (LSJ), Mosaic augmentation and Mixup augmentation, following the setting of [YOLOv5](https://github.com/ultralytics/yolov5). - For optimizer, we use AdamW with weight decay 0.05 and base per image lr 0.001 / 64. We are not good at using SGD. - For learning rate scheduler, we use linear decay scheduler. - We use decoupled head in our reproduced YOLOv5, which is different from the official YOLOv5'head. ## Train YOLOv5 ### Single GPU Taking training YOLOv5-S on COCO as the example, ```Shell python train.py --cuda -d coco --root path/to/coco -m yolov5_s -bs 16 -size 640 --wp_epoch 3 --max_epoch 300 --eval_epoch 10 --no_aug_epoch 20 --ema --fp16 --multi_scale ``` ### Multi GPU Taking training YOLOv5 on COCO as the example, ```Shell python -m torch.distributed.run --nproc_per_node=8 train.py --cuda -dist -d coco --root /data/datasets/ -m yolov5_s -bs 128 -size 640 --wp_epoch 3 --max_epoch 300 --eval_epoch 10 --no_aug_epoch 20 --ema --fp16 --sybn --multi_scale --save_folder weights/ ``` ## Test YOLOv5 Taking testing YOLOv5 on COCO-val as the example, ```Shell python test.py --cuda -d coco --root path/to/coco -m yolov5_s --weight path/to/yolov5_coco.pth -size 640 --show ``` ## Evaluate YOLOv5 Taking evaluating YOLOv5 on COCO-val as the example, ```Shell python eval.py --cuda -d coco --root path/to/coco -m yolov5_s --weight path/to/yolov5_coco.pth ``` ## Demo ### Detect with Image ```Shell python demo.py --mode image --path_to_img path/to/image_dirs/ --cuda -m yolov5_s --weight path/to/yolov5_coco.pth -size 640 --show ``` ### Detect with Video ```Shell python demo.py --mode video --path_to_vid path/to/video --cuda -m yolov5_s --weight path/to/yolov5_coco.pth -size 640 --show --gif ``` ### Detect with Camera ```Shell python demo.py --mode camera --cuda -m yolov5_s --weight path/to/weight -size 640 --show --gif ```