import torch import torch.nn as nn class SiLU(nn.Module): """export-friendly version of nn.SiLU()""" @staticmethod def forward(x): return x * torch.sigmoid(x) def get_conv2d(c1, c2, k, p, s, d, g, bias=False): conv = nn.Conv2d(c1, c2, k, stride=s, padding=p, dilation=d, groups=g, bias=bias) return conv def get_activation(act_type=None): if act_type == 'relu': return nn.ReLU(inplace=True) elif act_type == 'lrelu': return nn.LeakyReLU(0.1, inplace=True) elif act_type == 'mish': return nn.Mish(inplace=True) elif act_type == 'silu': return nn.SiLU(inplace=True) def get_norm(norm_type, dim): if norm_type == 'BN': return nn.BatchNorm2d(dim) elif norm_type == 'GN': return nn.GroupNorm(num_groups=32, num_channels=dim) # Basic conv layer class Conv(nn.Module): def __init__(self, c1, # in channels c2, # out channels k=1, # kernel size p=0, # padding s=1, # padding d=1, # dilation act_type='lrelu', # activation norm_type='BN', # normalization depthwise=False): super(Conv, self).__init__() convs = [] add_bias = False if norm_type else True if depthwise: convs.append(get_conv2d(c1, c1, k=k, p=p, s=s, d=d, g=c1, bias=add_bias)) # depthwise conv if norm_type: convs.append(get_norm(norm_type, c1)) if act_type: convs.append(get_activation(act_type)) # pointwise conv convs.append(get_conv2d(c1, c2, k=1, p=0, s=1, d=d, g=1, bias=add_bias)) if norm_type: convs.append(get_norm(norm_type, c2)) if act_type: convs.append(get_activation(act_type)) else: convs.append(get_conv2d(c1, c2, k=k, p=p, s=s, d=d, g=1, bias=add_bias)) if norm_type: convs.append(get_norm(norm_type, c2)) if act_type: convs.append(get_activation(act_type)) self.convs = nn.Sequential(*convs) def forward(self, x): return self.convs(x) # BottleNeck class Bottleneck(nn.Module): def __init__(self, in_dim, out_dim, expand_ratio=0.5, shortcut=False, depthwise=False, act_type='silu', norm_type='BN'): super(Bottleneck, self).__init__() inter_dim = int(out_dim * expand_ratio) # hidden channels self.cv1 = Conv(in_dim, inter_dim, k=1, norm_type=norm_type, act_type=act_type) self.cv2 = Conv(inter_dim, out_dim, k=3, p=1, norm_type=norm_type, act_type=act_type, depthwise=depthwise) self.shortcut = shortcut and in_dim == out_dim def forward(self, x): h = self.cv2(self.cv1(x)) return x + h if self.shortcut else h # CSP-stage block class CSPBlock(nn.Module): def __init__(self, in_dim, out_dim, expand_ratio=0.5, nblocks=1, shortcut=False, depthwise=False, act_type='silu', norm_type='BN'): super(CSPBlock, self).__init__() inter_dim = int(out_dim * expand_ratio) self.cv1 = Conv(in_dim, inter_dim, k=1, norm_type=norm_type, act_type=act_type) self.cv2 = Conv(in_dim, inter_dim, k=1, norm_type=norm_type, act_type=act_type) self.cv3 = Conv(2 * inter_dim, out_dim, k=1, norm_type=norm_type, act_type=act_type) self.m = nn.Sequential(*[ Bottleneck(inter_dim, inter_dim, expand_ratio=1.0, shortcut=shortcut, norm_type=norm_type, act_type=act_type, depthwise=depthwise) for _ in range(nblocks) ]) def forward(self, x): x1 = self.cv1(x) x2 = self.cv2(x) x3 = self.m(x1) out = self.cv3(torch.cat([x3, x2], dim=1)) return out