# Real-time Transformer-based Object Detector # ------------------- Det task -------------------- rtpdetr_cfg = { 'rtpdetr_r50':{ # ---------------- Model config ---------------- ## Model scale 'width': 1.0, 'depth': 1.0, 'max_stride': 32, 'out_stride': 16, # Image Encoder - Backbone 'backbone': 'resnet50', 'backbone_norm': 'FrozeBN', 'pretrained': True, 'freeze_at': 0, 'freeze_stem_only': False, 'hidden_dim': 256, 'en_num_heads': 8, 'en_num_layers': 6, 'en_ffn_dim': 2048, 'en_dropout': 0.0, 'en_act': 'gelu', # Transformer Decoder 'transformer': 'plain_detr_transformer', 'de_num_heads': 8, 'de_num_layers': 6, 'de_ffn_dim': 2048, 'de_dropout': 0.0, 'de_act': 'gelu', 'de_pre_norm': True, 'rpe_hidden_dim': 512, 'use_checkpoint': False, 'proposal_feature_levels': 3, 'proposal_tgt_strides': [8, 16, 32], 'num_queries_one2one': 300, 'num_queries_one2many': 1500, # ---------------- Assignment config ---------------- 'matcher_hpy': {'cost_class': 2.0, 'cost_bbox': 1.0, 'cost_giou': 2.0,}, # ---------------- Loss config ---------------- 'k_one2many': 6, 'lambda_one2many': 1.0, 'loss_coeff': {'class': 2, 'bbox': 1, 'giou': 2,}, # ---------------- Train config ---------------- ## input 'multi_scale': [0.5, 1.25], # 320 -> 800 'trans_type': 'rtdetr_l', # ---------------- Train config ---------------- 'trainer_type': 'rtpdetr', }, }