import torch import torch.nn as nn import torch.nn.functional as F try: from .yolox_basic import Conv, CSPBlock except: from yolox_basic import Conv, CSPBlock # PaFPN-CSP class YoloPaFPN(nn.Module): def __init__(self, in_dims=[256, 512, 1024], out_dim=256, width=1.0, depth=1.0, act_type='silu', norm_type='BN', depthwise=False): super(YoloPaFPN, self).__init__() self.in_dims = in_dims self.out_dim = out_dim c3, c4, c5 = in_dims # top dwon ## P5 -> P4 self.reduce_layer_1 = Conv(c5, int(512*width), k=1, norm_type=norm_type, act_type=act_type) self.top_down_layer_1 = CSPBlock(c4 + int(512*width), int(512*width), expand_ratio=0.5, kernel=[1, 3], nblocks=int(3*depth), shortcut=False, act_type=act_type, norm_type=norm_type, depthwise=depthwise ) ## P4 -> P3 self.reduce_layer_2 = Conv(c4, int(256*width), k=1, norm_type=norm_type, act_type=act_type) # 14 self.top_down_layer_2 = CSPBlock(c3 + int(256*width), int(256*width), expand_ratio=0.5, kernel=[1, 3], nblocks=int(3*depth), shortcut=False, act_type=act_type, norm_type=norm_type, depthwise=depthwise ) # bottom up ## P3 -> P4 self.reduce_layer_3 = Conv(int(256*width), int(256*width), k=3, p=1, s=2, act_type=act_type, norm_type=norm_type, depthwise=depthwise) self.bottom_up_layer_1 = CSPBlock(int(256*width) + int(256*width), int(512*width), expand_ratio=0.5, kernel=[1, 3], nblocks=int(3*depth), shortcut=False, act_type=act_type, norm_type=norm_type, depthwise=depthwise ) ## P4 -> P5 self.reduce_layer_4 = Conv(int(512*width), int(512*width), k=3, p=1, s=2, act_type=act_type, norm_type=norm_type, depthwise=depthwise) self.bottom_up_layer_2 = CSPBlock(int(512*width) + int(512*width), int(1024*width), expand_ratio=0.5, kernel=[1, 3], nblocks=int(3*depth), shortcut=False, act_type=act_type, norm_type=norm_type, depthwise=depthwise ) # output proj layers if out_dim is not None: # output proj layers self.out_layers = nn.ModuleList([ Conv(in_dim, out_dim, k=1, norm_type=norm_type, act_type=act_type) for in_dim in [int(256 * width), int(512 * width), int(1024 * width)] ]) self.out_dim = [out_dim] * 3 else: self.out_layers = None self.out_dim = [int(256 * width), int(512 * width), int(1024 * width)] def forward(self, features): c3, c4, c5 = features c6 = self.reduce_layer_1(c5) c7 = F.interpolate(c6, scale_factor=2.0) # s32->s16 c8 = torch.cat([c7, c4], dim=1) c9 = self.top_down_layer_1(c8) # P3/8 c10 = self.reduce_layer_2(c9) c11 = F.interpolate(c10, scale_factor=2.0) # s16->s8 c12 = torch.cat([c11, c3], dim=1) c13 = self.top_down_layer_2(c12) # to det # p4/16 c14 = self.reduce_layer_3(c13) c15 = torch.cat([c14, c10], dim=1) c16 = self.bottom_up_layer_1(c15) # to det # p5/32 c17 = self.reduce_layer_4(c16) c18 = torch.cat([c17, c6], dim=1) c19 = self.bottom_up_layer_2(c18) # to det out_feats = [c13, c16, c19] # [P3, P4, P5] # output proj layers if self.out_layers is not None: # output proj layers out_feats_proj = [] for feat, layer in zip(out_feats, self.out_layers): out_feats_proj.append(layer(feat)) return out_feats_proj return out_feats def build_fpn(cfg, in_dims, out_dim=None): model = cfg['fpn'] # build neck if model == 'yolo_pafpn': fpn_net = YoloPaFPN(in_dims=in_dims, out_dim=out_dim, width=cfg['width'], depth=cfg['depth'], act_type=cfg['fpn_act'], norm_type=cfg['fpn_norm'], depthwise=cfg['fpn_depthwise'] ) return fpn_net