import torch import torch.nn as nn try: from .yolov8_basic import Conv except: from yolov8_basic import Conv # Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher class SPPF(nn.Module): def __init__(self, in_dim, out_dim, expand_ratio=0.5, pooling_size=5, act_type='', norm_type=''): super().__init__() inter_dim = int(in_dim * expand_ratio) self.out_dim = out_dim self.cv1 = Conv(in_dim, inter_dim, k=1, act_type=act_type, norm_type=norm_type) self.cv2 = Conv(inter_dim * 4, out_dim, k=1, act_type=act_type, norm_type=norm_type) self.m = nn.MaxPool2d(kernel_size=pooling_size, stride=1, padding=pooling_size // 2) def forward(self, x): x = self.cv1(x) y1 = self.m(x) y2 = self.m(y1) return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1)) # SPPF block with CSP module class SPPFBlockCSP(nn.Module): """ CSP Spatial Pyramid Pooling Block """ def __init__(self, in_dim, out_dim, expand_ratio=0.5, pooling_size=5, act_type='lrelu', norm_type='BN', depthwise=False ): super(SPPFBlockCSP, self).__init__() inter_dim = int(in_dim * expand_ratio) self.out_dim = out_dim self.cv1 = Conv(in_dim, inter_dim, k=1, act_type=act_type, norm_type=norm_type) self.cv2 = Conv(in_dim, inter_dim, k=1, act_type=act_type, norm_type=norm_type) self.m = nn.Sequential( Conv(inter_dim, inter_dim, k=3, p=1, act_type=act_type, norm_type=norm_type, depthwise=depthwise), SPPF(inter_dim, inter_dim, expand_ratio=1.0, pooling_size=pooling_size, act_type=act_type, norm_type=norm_type), Conv(inter_dim, inter_dim, k=3, p=1, act_type=act_type, norm_type=norm_type, depthwise=depthwise) ) self.cv3 = Conv(inter_dim * 2, self.out_dim, k=1, act_type=act_type, norm_type=norm_type) def forward(self, x): x1 = self.cv1(x) x2 = self.cv2(x) x3 = self.m(x2) y = self.cv3(torch.cat([x1, x3], dim=1)) return y def build_neck(cfg, in_dim, out_dim): model = cfg['neck'] print('==============================') print('Neck: {}'.format(model)) # build neck if model == 'sppf': neck = SPPF( in_dim=in_dim, out_dim=out_dim, expand_ratio=cfg['expand_ratio'], pooling_size=cfg['pooling_size'], act_type=cfg['neck_act'], norm_type=cfg['neck_norm'] ) elif model == 'sppf_block_csp': neck = SPPFBlockCSP( in_dim=in_dim, out_dim=out_dim, expand_ratio=cfg['expand_ratio'], pooling_size=cfg['pooling_size'], act_type=cfg['neck_act'], norm_type=cfg['neck_norm'], depthwise=cfg['neck_depthwise'] ) return neck