import torch import torch.nn as nn try: from .yolov8_basic import Conv, ELAN_CSP_Block except: from yolov8_basic import Conv, ELAN_CSP_Block # ---------------------------- ImageNet pretrained weights ---------------------------- model_urls = { 'elan_cspnet_nano': "https://github.com/yjh0410/image_classification_pytorch/releases/download/weight/elan_cspnet_nano.pth", 'elan_cspnet_small': None, 'elan_cspnet_medium': None, 'elan_cspnet_large': "https://github.com/yjh0410/image_classification_pytorch/releases/download/weight/elan_cspnet_large.pth", 'elan_cspnet_huge': None, } # ---------------------------- Backbones ---------------------------- # ELAN-CSPNet class ELAN_CSPNet(nn.Module): def __init__(self, width=1.0, depth=1.0, ratio=1.0, act_type='silu', norm_type='BN', depthwise=False): super(ELAN_CSPNet, self).__init__() self.feat_dims = [int(256 * width), int(512 * width), int(512 * width * ratio)] # stride = 2 self.layer_1 = Conv(3, int(64*width), k=3, p=1, s=2, act_type=act_type, norm_type=norm_type) # stride = 4 self.layer_2 = nn.Sequential( Conv(int(64*width), int(128*width), k=3, p=1, s=2, act_type=act_type, norm_type=norm_type), ELAN_CSP_Block(int(128*width), int(128*width), nblocks=int(3*depth), shortcut=True, act_type=act_type, norm_type=norm_type, depthwise=depthwise) ) # stride = 8 self.layer_3 = nn.Sequential( Conv(int(128*width), int(256*width), k=3, p=1, s=2, act_type=act_type, norm_type=norm_type), ELAN_CSP_Block(int(256*width), int(256*width), nblocks=int(6*depth), shortcut=True, act_type=act_type, norm_type=norm_type, depthwise=depthwise) ) # stride = 16 self.layer_4 = nn.Sequential( Conv(int(256*width), int(512*width), k=3, p=1, s=2, act_type=act_type, norm_type=norm_type), ELAN_CSP_Block(int(512*width), int(512*width), nblocks=int(6*depth), shortcut=True, act_type=act_type, norm_type=norm_type, depthwise=depthwise) ) # stride = 32 self.layer_5 = nn.Sequential( Conv(int(512*width), int(512*width*ratio), k=3, p=1, s=2, act_type=act_type, norm_type=norm_type), ELAN_CSP_Block(int(512*width*ratio), int(512*width*ratio), nblocks=int(3*depth), shortcut=True, act_type=act_type, norm_type=norm_type, depthwise=depthwise) ) def forward(self, x): c1 = self.layer_1(x) c2 = self.layer_2(c1) c3 = self.layer_3(c2) c4 = self.layer_4(c3) c5 = self.layer_5(c4) outputs = [c3, c4, c5] return outputs # ---------------------------- Functions ---------------------------- ## load pretrained weight def load_weight(model, model_name): # load weight print('Loading pretrained weight ...') url = model_urls[model_name] if url is not None: checkpoint = torch.hub.load_state_dict_from_url( url=url, map_location="cpu", check_hash=True) # checkpoint state dict checkpoint_state_dict = checkpoint.pop("model") # model state dict model_state_dict = model.state_dict() # check for k in list(checkpoint_state_dict.keys()): if k in model_state_dict: shape_model = tuple(model_state_dict[k].shape) shape_checkpoint = tuple(checkpoint_state_dict[k].shape) if shape_model != shape_checkpoint: checkpoint_state_dict.pop(k) else: checkpoint_state_dict.pop(k) print(k) model.load_state_dict(checkpoint_state_dict) else: print('No pretrained for {}'.format(model_name)) return model # build ELAN-Net def build_backbone(cfg): # model backbone = ELAN_CSPNet( width=cfg['width'], depth=cfg['depth'], ratio=cfg['ratio'], act_type=cfg['bk_act'], norm_type=cfg['bk_norm'], depthwise=cfg['bk_dpw'] ) # check whether to load imagenet pretrained weight if cfg['pretrained']: if cfg['width'] == 0.25 and cfg['depth'] == 0.34 and cfg['ratio'] == 2.0: backbone = load_weight(backbone, model_name='elan_cspnet_nano') elif cfg['width'] == 0.5 and cfg['depth'] == 0.34 and cfg['ratio'] == 2.0: backbone = load_weight(backbone, model_name='elan_cspnet_small') elif cfg['width'] == 0.75 and cfg['depth'] == 0.67 and cfg['ratio'] == 1.5: backbone = load_weight(backbone, model_name='elan_cspnet_medium') elif cfg['width'] == 1.0 and cfg['depth'] == 1.0 and cfg['ratio'] == 1.0: backbone = load_weight(backbone, model_name='elan_cspnet_large') elif cfg['width'] == 1.25 and cfg['depth'] == 1.34 and cfg['ratio'] == 1.0: backbone = load_weight(backbone, model_name='elan_cspnet_huge') feat_dims = backbone.feat_dims return backbone, feat_dims if __name__ == '__main__': import time from thop import profile cfg = { 'pretrained': True, 'bk_act': 'silu', 'bk_norm': 'BN', 'bk_dpw': False, 'width': 1.0, 'depth': 1.0, 'ratio': 1.0, } model, feats = build_backbone(cfg) x = torch.randn(1, 3, 640, 640) t0 = time.time() outputs = model(x) t1 = time.time() print('Time: ', t1 - t0) for out in outputs: print(out.shape) x = torch.randn(1, 3, 640, 640) print('==============================') flops, params = profile(model, inputs=(x, ), verbose=False) print('==============================') print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2)) print('Params : {:.2f} M'.format(params / 1e6))