import torch import torch.nn as nn import torch.nn.functional as F class TaskAlignedAssigner(nn.Module): def __init__(self, topk=10, num_classes=80, alpha=0.5, beta=6.0, eps=1e-9): super(TaskAlignedAssigner, self).__init__() self.topk = topk self.num_classes = num_classes self.bg_idx = num_classes self.alpha = alpha self.beta = beta self.eps = eps @torch.no_grad() def forward(self, pd_scores, pd_bboxes, anc_points, gt_labels, gt_bboxes): """This code referenced to https://github.com/Nioolek/PPYOLOE_pytorch/blob/master/ppyoloe/assigner/tal_assigner.py Args: pd_scores (Tensor): shape(bs, num_total_anchors, num_classes) pd_bboxes (Tensor): shape(bs, num_total_anchors, 4) anc_points (Tensor): shape(num_total_anchors, 2) gt_labels (Tensor): shape(bs, n_max_boxes, 1) gt_bboxes (Tensor): shape(bs, n_max_boxes, 4) Returns: target_labels (Tensor): shape(bs, num_total_anchors) target_bboxes (Tensor): shape(bs, num_total_anchors, 4) target_scores (Tensor): shape(bs, num_total_anchors, num_classes) fg_mask (Tensor): shape(bs, num_total_anchors) """ self.bs = pd_scores.size(0) self.n_max_boxes = gt_bboxes.size(1) mask_pos, align_metric, overlaps = self.get_pos_mask( pd_scores, pd_bboxes, gt_labels, gt_bboxes, anc_points) target_gt_idx, fg_mask, mask_pos = select_highest_overlaps( mask_pos, overlaps, self.n_max_boxes) # assigned target target_labels, target_bboxes, target_scores = self.get_targets( gt_labels, gt_bboxes, target_gt_idx, fg_mask) # normalize align_metric *= mask_pos pos_align_metrics = align_metric.max(axis=-1, keepdim=True)[0] pos_overlaps = (overlaps * mask_pos).max(axis=-1, keepdim=True)[0] norm_align_metric = (align_metric * pos_overlaps / (pos_align_metrics + self.eps)).max(-2)[0].unsqueeze(-1) target_scores = target_scores * norm_align_metric return target_labels, target_bboxes, target_scores, fg_mask.bool() def get_pos_mask(self, pd_scores, pd_bboxes, gt_labels, gt_bboxes, anc_points): # get anchor_align metric align_metric, overlaps = self.get_box_metrics(pd_scores, pd_bboxes, gt_labels, gt_bboxes) # get in_gts mask mask_in_gts = select_candidates_in_gts(anc_points, gt_bboxes) # get topk_metric mask mask_topk = self.select_topk_candidates(align_metric * mask_in_gts) # merge all mask to a final mask mask_pos = mask_topk * mask_in_gts return mask_pos, align_metric, overlaps def get_box_metrics(self, pd_scores, pd_bboxes, gt_labels, gt_bboxes): pd_scores = pd_scores.permute(0, 2, 1) gt_labels = gt_labels.long() ind = torch.zeros([2, self.bs, self.n_max_boxes], dtype=torch.long) ind[0] = torch.arange(end=self.bs).view(-1, 1).repeat(1, self.n_max_boxes) ind[1] = gt_labels.squeeze(-1) bbox_scores = pd_scores[ind[0], ind[1]] overlaps = iou_calculator(gt_bboxes, pd_bboxes) align_metric = bbox_scores.pow(self.alpha) * overlaps.pow(self.beta) return align_metric, overlaps def select_topk_candidates(self, metrics, largest=True): num_anchors = metrics.shape[-1] topk_metrics, topk_idxs = torch.topk( metrics, self.topk, axis=-1, largest=largest) topk_mask = (topk_metrics.max(axis=-1, keepdim=True)[0] > self.eps).tile( [1, 1, self.topk]) topk_idxs = torch.where(topk_mask, topk_idxs, torch.zeros_like(topk_idxs)) is_in_topk = F.one_hot(topk_idxs, num_anchors).sum(axis=-2) is_in_topk = torch.where(is_in_topk > 1, torch.zeros_like(is_in_topk), is_in_topk) return is_in_topk.to(metrics.dtype) def get_targets(self, gt_labels, gt_bboxes, target_gt_idx, fg_mask): # assigned target labels batch_ind = torch.arange(end=self.bs, dtype=torch.int64, device=gt_labels.device)[...,None] target_gt_idx = target_gt_idx + batch_ind * self.n_max_boxes target_labels = gt_labels.long().flatten()[target_gt_idx] # assigned target boxes target_bboxes = gt_bboxes.reshape([-1, 4])[target_gt_idx] # assigned target scores target_labels[target_labels<0] = 0 target_scores = F.one_hot(target_labels, self.num_classes) fg_scores_mask = fg_mask[:, :, None].repeat(1, 1, self.num_classes) target_scores = torch.where(fg_scores_mask > 0, target_scores, torch.full_like(target_scores, 0)) return target_labels, target_bboxes, target_scores def select_candidates_in_gts(xy_centers, gt_bboxes, eps=1e-9): """select the positive anchors's center in gt Args: xy_centers (Tensor): shape(bs*n_max_boxes, num_total_anchors, 4) gt_bboxes (Tensor): shape(bs, n_max_boxes, 4) Return: (Tensor): shape(bs, n_max_boxes, num_total_anchors) """ n_anchors = xy_centers.size(0) bs, n_max_boxes, _ = gt_bboxes.size() _gt_bboxes = gt_bboxes.reshape([-1, 4]) xy_centers = xy_centers.unsqueeze(0).repeat(bs * n_max_boxes, 1, 1) gt_bboxes_lt = _gt_bboxes[:, 0:2].unsqueeze(1).repeat(1, n_anchors, 1) gt_bboxes_rb = _gt_bboxes[:, 2:4].unsqueeze(1).repeat(1, n_anchors, 1) b_lt = xy_centers - gt_bboxes_lt b_rb = gt_bboxes_rb - xy_centers bbox_deltas = torch.cat([b_lt, b_rb], dim=-1) bbox_deltas = bbox_deltas.reshape([bs, n_max_boxes, n_anchors, -1]) return (bbox_deltas.min(axis=-1)[0] > eps).to(gt_bboxes.dtype) def select_highest_overlaps(mask_pos, overlaps, n_max_boxes): """if an anchor box is assigned to multiple gts, the one with the highest iou will be selected. Args: mask_pos (Tensor): shape(bs, n_max_boxes, num_total_anchors) overlaps (Tensor): shape(bs, n_max_boxes, num_total_anchors) Return: target_gt_idx (Tensor): shape(bs, num_total_anchors) fg_mask (Tensor): shape(bs, num_total_anchors) mask_pos (Tensor): shape(bs, n_max_boxes, num_total_anchors) """ fg_mask = mask_pos.sum(axis=-2) if fg_mask.max() > 1: mask_multi_gts = (fg_mask.unsqueeze(1) > 1).repeat([1, n_max_boxes, 1]) max_overlaps_idx = overlaps.argmax(axis=1) is_max_overlaps = F.one_hot(max_overlaps_idx, n_max_boxes) is_max_overlaps = is_max_overlaps.permute(0, 2, 1).to(overlaps.dtype) mask_pos = torch.where(mask_multi_gts, is_max_overlaps, mask_pos) fg_mask = mask_pos.sum(axis=-2) target_gt_idx = mask_pos.argmax(axis=-2) return target_gt_idx, fg_mask , mask_pos def iou_calculator(box1, box2, eps=1e-9): """Calculate iou for batch Args: box1 (Tensor): shape(bs, n_max_boxes, 1, 4) box2 (Tensor): shape(bs, 1, num_total_anchors, 4) Return: (Tensor): shape(bs, n_max_boxes, num_total_anchors) """ box1 = box1.unsqueeze(2) # [N, M1, 4] -> [N, M1, 1, 4] box2 = box2.unsqueeze(1) # [N, M2, 4] -> [N, 1, M2, 4] px1y1, px2y2 = box1[:, :, :, 0:2], box1[:, :, :, 2:4] gx1y1, gx2y2 = box2[:, :, :, 0:2], box2[:, :, :, 2:4] x1y1 = torch.maximum(px1y1, gx1y1) x2y2 = torch.minimum(px2y2, gx2y2) overlap = (x2y2 - x1y1).clip(0).prod(-1) area1 = (px2y2 - px1y1).clip(0).prod(-1) area2 = (gx2y2 - gx1y1).clip(0).prod(-1) union = area1 + area2 - overlap + eps return overlap / union