import torch import torch.nn as nn try: from .yolov7_basic import Conv, ELANBlock, DownSample except: from yolov7_basic import Conv, ELANBlock, DownSample model_urls = { "elannet": "https://github.com/yjh0410/image_classification_pytorch/releases/download/weight/yolov7_elannet.pth", } # --------------------- CSPDarkNet-53 ----------------------- # ELANNet class ELANNet(nn.Module): """ ELAN-Net of YOLOv7-L. """ def __init__(self, act_type='silu', norm_type='BN', depthwise=False): super(ELANNet, self).__init__() self.feat_dims = [512, 1024, 1024] # P1/2 self.layer_1 = nn.Sequential( Conv(3, 32, k=3, p=1, act_type=act_type, norm_type=norm_type, depthwise=depthwise), Conv(32, 64, k=3, p=1, s=2, act_type=act_type, norm_type=norm_type, depthwise=depthwise), Conv(64, 64, k=3, p=1, act_type=act_type, norm_type=norm_type, depthwise=depthwise) ) # P2/4 self.layer_2 = nn.Sequential( Conv(64, 128, k=3, p=1, s=2, act_type=act_type, norm_type=norm_type, depthwise=depthwise), ELANBlock(in_dim=128, out_dim=256, expand_ratio=0.5, act_type=act_type, norm_type=norm_type, depthwise=depthwise) ) # P3/8 self.layer_3 = nn.Sequential( DownSample(in_dim=256, act_type=act_type), ELANBlock(in_dim=256, out_dim=512, expand_ratio=0.5, act_type=act_type, norm_type=norm_type, depthwise=depthwise) ) # P4/16 self.layer_4 = nn.Sequential( DownSample(in_dim=512, act_type=act_type), ELANBlock(in_dim=512, out_dim=1024, expand_ratio=0.5, act_type=act_type, norm_type=norm_type, depthwise=depthwise) ) # P5/32 self.layer_5 = nn.Sequential( DownSample(in_dim=1024, act_type=act_type), ELANBlock(in_dim=1024, out_dim=1024, expand_ratio=0.25, act_type=act_type, norm_type=norm_type, depthwise=depthwise) ) def forward(self, x): c1 = self.layer_1(x) c2 = self.layer_2(c1) c3 = self.layer_3(c2) c4 = self.layer_4(c3) c5 = self.layer_5(c4) outputs = [c3, c4, c5] return outputs # --------------------- Functions ----------------------- def build_backbone(cfg, pretrained=False): """Constructs a ELANNet model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ backbone = ELANNet(cfg['bk_act'], cfg['bk_norm'], cfg['bk_dpw']) feat_dims = backbone.feat_dims if pretrained: url = model_urls['elannet'] if url is not None: print('Loading pretrained weight ...') checkpoint = torch.hub.load_state_dict_from_url( url=url, map_location="cpu", check_hash=True) # checkpoint state dict checkpoint_state_dict = checkpoint.pop("model") # model state dict model_state_dict = backbone.state_dict() # check for k in list(checkpoint_state_dict.keys()): if k in model_state_dict: shape_model = tuple(model_state_dict[k].shape) shape_checkpoint = tuple(checkpoint_state_dict[k].shape) if shape_model != shape_checkpoint: checkpoint_state_dict.pop(k) else: checkpoint_state_dict.pop(k) print(k) backbone.load_state_dict(checkpoint_state_dict) else: print('No backbone pretrained: ELANNet') return backbone, feat_dims if __name__ == '__main__': import time from thop import profile cfg = { 'pretrained': False, 'bk_act': 'silu', 'bk_norm': 'BN', 'bk_dpw': False, 'p6_feat': False, 'p7_feat': False, } model, feats = build_backbone(cfg) x = torch.randn(1, 3, 224, 224) t0 = time.time() outputs = model(x) t1 = time.time() print('Time: ', t1 - t0) for out in outputs: print(out.shape) x = torch.randn(1, 3, 224, 224) print('==============================') flops, params = profile(model, inputs=(x, ), verbose=False) print('==============================') print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2)) print('Params : {:.2f} M'.format(params / 1e6))