import torch import torch.nn as nn try: from .yolov5_basic import Conv, CSPBlock from .yolov5_neck import SPPF except: from yolov5_basic import Conv, CSPBlock from yolov5_neck import SPPF model_urls = { "cspdarknet_large": "https://github.com/yjh0410/image_classification_pytorch/releases/download/weight/cspdarknet_large.pth", } # CSPDarkNet class CSPDarkNet(nn.Module): def __init__(self, depth=1.0, width=1.0, act_type='silu', norm_type='BN', depthwise=False): super(CSPDarkNet, self).__init__() self.feat_dims = [int(256*width), int(512*width), int(1024*width)] # P1 self.layer_1 = Conv(3, int(64*width), k=6, p=2, s=2, act_type=act_type, norm_type=norm_type, depthwise=depthwise) # P2 self.layer_2 = nn.Sequential( Conv(int(64*width), int(128*width), k=3, p=1, s=2, act_type=act_type, norm_type=norm_type, depthwise=depthwise), CSPBlock(int(128*width), int(128*width), expand_ratio=0.5, nblocks=int(3*depth), shortcut=True, act_type=act_type, norm_type=norm_type, depthwise=depthwise) ) # P3 self.layer_3 = nn.Sequential( Conv(int(128*width), int(256*width), k=3, p=1, s=2, act_type=act_type, norm_type=norm_type, depthwise=depthwise), CSPBlock(int(256*width), int(256*width), expand_ratio=0.5, nblocks=int(9*depth), shortcut=True, act_type=act_type, norm_type=norm_type, depthwise=depthwise) ) # P4 self.layer_4 = nn.Sequential( Conv(int(256*width), int(512*width), k=3, p=1, s=2, act_type=act_type, norm_type=norm_type, depthwise=depthwise), CSPBlock(int(512*width), int(512*width), expand_ratio=0.5, nblocks=int(9*depth), shortcut=True, act_type=act_type, norm_type=norm_type, depthwise=depthwise) ) # P5 self.layer_5 = nn.Sequential( Conv(int(512*width), int(1024*width), k=3, p=1, s=2, act_type=act_type, norm_type=norm_type, depthwise=depthwise), SPPF(int(1024*width), int(1024*width), expand_ratio=0.5, act_type=act_type, norm_type=norm_type), CSPBlock(int(1024*width), int(1024*width), expand_ratio=0.5, nblocks=int(3*depth), shortcut=True, act_type=act_type, norm_type=norm_type, depthwise=depthwise) ) def forward(self, x): c1 = self.layer_1(x) c2 = self.layer_2(c1) c3 = self.layer_3(c2) c4 = self.layer_4(c3) c5 = self.layer_5(c4) outputs = [c3, c4, c5] return outputs # ---------------------------- Functions ---------------------------- def build_backbone(cfg, pretrained=False): """Constructs a darknet-53 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ backbone = CSPDarkNet(cfg['depth'], cfg['width'], cfg['bk_act'], cfg['bk_norm'], cfg['bk_dpw']) feat_dims = backbone.feat_dims if pretrained: if cfg['width'] == 1.0 and cfg['depth'] == 1.0: url = model_urls['cspdarknet_large'] if url is not None: print('Loading pretrained weight ...') checkpoint = torch.hub.load_state_dict_from_url( url=url, map_location="cpu", check_hash=True) # checkpoint state dict checkpoint_state_dict = checkpoint.pop("model") # model state dict model_state_dict = backbone.state_dict() # check for k in list(checkpoint_state_dict.keys()): if k in model_state_dict: shape_model = tuple(model_state_dict[k].shape) shape_checkpoint = tuple(checkpoint_state_dict[k].shape) if shape_model != shape_checkpoint: checkpoint_state_dict.pop(k) else: checkpoint_state_dict.pop(k) print(k) backbone.load_state_dict(checkpoint_state_dict) else: print('No backbone pretrained: CSPDarkNet53') return backbone, feat_dims if __name__ == '__main__': import time from thop import profile cfg = { 'pretrained': False, 'bk_act': 'lrelu', 'bk_norm': 'BN', 'bk_dpw': False, 'p6_feat': False, 'p7_feat': False, 'width': 1.0, 'depth': 1.0, } model, feats = build_backbone(cfg) x = torch.randn(1, 3, 224, 224) t0 = time.time() outputs = model(x) t1 = time.time() print('Time: ', t1 - t0) for out in outputs: print(out.shape) x = torch.randn(1, 3, 224, 224) print('==============================') flops, params = profile(model, inputs=(x, ), verbose=False) print('==============================') print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2)) print('Params : {:.2f} M'.format(params / 1e6))