import torch import torch.nn as nn import torch.nn.functional as F import copy from .matcher import build_matcher from utils.misc import sigmoid_focal_loss from utils.box_ops import box_cxcywh_to_xyxy, generalized_box_iou from utils.distributed_utils import is_dist_avail_and_initialized, get_world_size class Criterion(nn.Module): """ This class computes the loss for DETR. The process happens in two steps: 1) we compute hungarian assignment between ground truth boxes and the outputs of the model 2) we supervise each pair of matched ground-truth / prediction (supervise class and box) """ def __init__(self, num_classes, matcher, weight_dict, losses, focal_alpha=0.25): """ Create the criterion. Parameters: num_classes: number of object categories, omitting the special no-object category matcher: module able to compute a matching between targets and proposals weight_dict: dict containing as key the names of the losses and as values their relative weight. eos_coef: relative classification weight applied to the no-object category losses: list of all the losses to be applied. See get_loss for list of available losses. """ super().__init__() self.num_classes = num_classes self.matcher = matcher self.weight_dict = weight_dict self.losses = losses self.focal_alpha = focal_alpha def _get_src_permutation_idx(self, indices): # permute predictions following indices batch_idx = torch.cat([torch.full_like(src, i) for i, (src, _) in enumerate(indices)]) src_idx = torch.cat([src for (src, _) in indices]) return batch_idx, src_idx def _get_tgt_permutation_idx(self, indices): # permute targets following indices batch_idx = torch.cat([torch.full_like(tgt, i) for i, (_, tgt) in enumerate(indices)]) tgt_idx = torch.cat([tgt for (_, tgt) in indices]) return batch_idx, tgt_idx def loss_labels(self, outputs, targets, indices, num_boxes): """Classification loss (NLL) targets dicts must contain the key "labels" containing a tensor of dim [nb_target_boxes] """ assert 'pred_logits' in outputs src_logits = outputs['pred_logits'] idx = self._get_src_permutation_idx(indices) target_classes_o = torch.cat([t["labels"][J] for t, (_, J) in zip(targets, indices)]).to(src_logits.device) target_classes = torch.full(src_logits.shape[:2], self.num_classes, dtype=torch.int64, device=src_logits.device) target_classes[idx] = target_classes_o target_classes_onehot = torch.zeros([src_logits.shape[0], src_logits.shape[1], src_logits.shape[2] + 1], dtype=src_logits.dtype, layout=src_logits.layout, device=src_logits.device) target_classes_onehot.scatter_(2, target_classes.unsqueeze(-1), 1) target_classes_onehot = target_classes_onehot[:, :, :-1] loss_cls = sigmoid_focal_loss(src_logits, target_classes_onehot, num_boxes, alpha=self.focal_alpha, gamma=2) * \ src_logits.shape[1] losses = {'loss_cls': loss_cls} return losses def loss_boxes(self, outputs, targets, indices, num_boxes): """Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss targets dicts must contain the key "boxes" containing a tensor of dim [nb_target_boxes, 4] The target boxes are expected in format (center_x, center_y, w, h), normalized by the image size. """ assert 'pred_boxes' in outputs idx = self._get_src_permutation_idx(indices) src_boxes = outputs['pred_boxes'][idx] target_boxes = torch.cat([t['boxes'][i] for t, (_, i) in zip(targets, indices)], dim=0).to(src_boxes.device) loss_bbox = F.l1_loss(src_boxes, target_boxes, reduction='none') losses = {} losses['loss_bbox'] = loss_bbox.sum() / num_boxes loss_giou = 1 - torch.diag(generalized_box_iou( box_cxcywh_to_xyxy(src_boxes), box_cxcywh_to_xyxy(target_boxes))) losses['loss_giou'] = loss_giou.sum() / num_boxes return losses def get_loss(self, loss, outputs, targets, indices, num_boxes, **kwargs): loss_map = { 'labels': self.loss_labels, 'boxes': self.loss_boxes, } assert loss in loss_map, f'do you really want to compute {loss} loss?' return loss_map[loss](outputs, targets, indices, num_boxes, **kwargs) def forward(self, outputs, targets): """ This performs the loss computation. Parameters: outputs: dict of tensors, see the output specification of the model for the format targets: list of dicts, such that len(targets) == batch_size. The expected keys in each dict depends on the losses applied, see each loss' doc """ outputs_without_aux = {k: v for k, v in outputs.items() if k != 'aux_outputs'} # Retrieve the matching between the outputs of the last layer and the targets indices = self.matcher(outputs_without_aux, targets) # Compute the average number of target boxes accross all nodes, for normalization purposes num_boxes = sum(len(t["labels"]) for t in targets) num_boxes = torch.as_tensor([num_boxes], dtype=torch.float, device=next(iter(outputs.values())).device) if is_dist_avail_and_initialized(): torch.distributed.all_reduce(num_boxes) num_boxes = torch.clamp(num_boxes / get_world_size(), min=1).item() # Compute all the requested losses losses = {} for loss in self.losses: losses.update(self.get_loss(loss, outputs, targets, indices, num_boxes)) # In case of auxiliary losses, we repeat this process with the output of each intermediate layer. if 'aux_outputs' in outputs: for i, aux_outputs in enumerate(outputs['aux_outputs']): indices = self.matcher(aux_outputs, targets) for loss in self.losses: kwargs = {} l_dict = self.get_loss(loss, aux_outputs, targets, indices, num_boxes, **kwargs) l_dict = {k + f'_{i}': v for k, v in l_dict.items()} losses.update(l_dict) weight_dict = self.weight_dict total_loss = sum(losses[k] * weight_dict[k] for k in losses.keys() if k in weight_dict) losses['losses'] = total_loss return losses # build criterion def build_criterion(cfg, num_classes, aux_loss=False): matcher = build_matcher(cfg) weight_dict = {'loss_cls': cfg['loss_cls_weight'], 'loss_bbox': cfg['loss_box_weight'], 'loss_giou': cfg['loss_giou_weight']} # TODO this is a hack if aux_loss: aux_weight_dict = {} for i in range(cfg['num_decoder_layers'] - 1): aux_weight_dict.update({k + f'_{i}': v for k, v in weight_dict.items()}) weight_dict.update(aux_weight_dict) losses = ['labels', 'boxes'] criterion = Criterion( num_classes=num_classes, matcher=matcher, weight_dict=weight_dict, losses=losses, focal_alpha=cfg['focal_alpha']) return criterion