# RTCDet: ## Effectiveness of the pretrained weight - **IN1K**: We pretrained the backbone (RTCNet) on the ImageNet-1K dataset with the classification task setting. - **Scratch**: We just train the detector on the COCO without any pretrained weights for the backbone. For the small model: | Model | Pretrained | Scale | Epoch | APval
0.5:0.95 | APval
0.5 | |----------|------------|-------|-------|------------------------|-------------------| | RTCDet-N | - | 640 | 500 | 37.0 | 52.9 | | RTCDet-N | IN1K | 640 | 500 | | | | RTCDet-L | - | 640 | 500 | 50.2 | 68.0 | | RTCDet-L | IN1K | 640 | 500 | | | ## Results on the COCO-val | Model | Batch | Scale | APval
0.5:0.95 | APval
0.5 | FLOPs
(G) | Params
(M) | Weight | |----------|-------|-------|------------------------|-------------------|-------------------|--------------------|--------| | RTCDet-N | 8xb16 | 640 | 37.0 | 52.9 | 8.8 | 3.2 | | | RTCDet-S | 8xb16 | 640 | | | | | | | RTCDet-M | 8xb16 | 640 | | | | | | | RTCDet-L | 8xb16 | 640 | | | | | | | RTCDet-X | 8xb16 | 640 | 50.7 | 68.3 | 165.7 | 43.7 | | - For the backbone, we use the ImageNet-1K pretrained weight. - For training, we train RTCDet series with 300 epochs on COCO. - For data augmentation, we use the large scale jitter (LSJ), Mosaic augmentation and Mixup augmentation, following the YOLOv8. - For optimizer, we use AdamW with weight decay 0.05 and base per image lr 0.001 / 64,. - For learning rate scheduler, we use Linear decay scheduler. ## Train RTCDet ### Single GPU Taking training RTCDet-S on COCO as the example, ```Shell python train.py --cuda -d coco --root path/to/coco -m rtcdet_s -bs 16 -size 640 --wp_epoch 3 --max_epoch 300 --eval_epoch 10 --no_aug_epoch 20 --ema --fp16 --multi_scale ``` ### Multi GPU Taking training RTCDet-S on COCO as the example, ```Shell python -m torch.distributed.run --nproc_per_node=8 train.py --cuda -dist -d coco --root /data/datasets/ -m rtcdet_s -bs 128 -size 640 --wp_epoch 3 --max_epoch 300 --eval_epoch 10 --no_aug_epoch 20 --ema --fp16 --sybn --multi_scale --save_folder weights/ ``` ## Test RTCDet Taking testing RTCDet-S on COCO-val as the example, ```Shell python test.py --cuda -d coco --root path/to/coco -m rtcdet_s --weight path/to/RTCDet_s.pth -size 640 -vt 0.4 --show ``` ## Evaluate RTCDet Taking evaluating RTCDet-S on COCO-val as the example, ```Shell python eval.py --cuda -d coco-val --root path/to/coco -m rtcdet_s --weight path/to/RTCDet_s.pth ``` ## Demo ### Detect with Image ```Shell python demo.py --mode image --path_to_img path/to/image_dirs/ --cuda -m rtcdet_s --weight path/to/weight -size 640 -vt 0.4 --show ``` ### Detect with Video ```Shell python demo.py --mode video --path_to_vid path/to/video --cuda -m rtcdet_s --weight path/to/weight -size 640 -vt 0.4 --show --gif ``` ### Detect with Camera ```Shell python demo.py --mode camera --cuda -m rtcdet_s --weight path/to/weight -size 640 -vt 0.4 --show --gif ```