import numpy as np import torch import torch.nn as nn # ---------------------------- 2D CNN ---------------------------- class SiLU(nn.Module): """export-friendly version of nn.SiLU()""" @staticmethod def forward(x): return x * torch.sigmoid(x) def get_conv2d(c1, c2, k, p, s, d, g, bias=False): conv = nn.Conv2d(c1, c2, k, stride=s, padding=p, dilation=d, groups=g, bias=bias) return conv def get_activation(act_type=None): if act_type == 'relu': return nn.ReLU(inplace=True) elif act_type == 'lrelu': return nn.LeakyReLU(0.1, inplace=True) elif act_type == 'mish': return nn.Mish(inplace=True) elif act_type == 'silu': return nn.SiLU(inplace=True) elif act_type is None: return nn.Identity() def get_norm(norm_type, dim): if norm_type == 'BN': return nn.BatchNorm2d(dim) elif norm_type == 'GN': return nn.GroupNorm(num_groups=32, num_channels=dim) # Basic conv layer class Conv(nn.Module): def __init__(self, c1, # in channels c2, # out channels k=1, # kernel size p=0, # padding s=1, # padding d=1, # dilation act_type='lrelu', # activation norm_type='BN', # normalization depthwise=False): super(Conv, self).__init__() convs = [] add_bias = False if norm_type else True p = p if d == 1 else d if depthwise: convs.append(get_conv2d(c1, c1, k=k, p=p, s=s, d=d, g=c1, bias=add_bias)) # depthwise conv if norm_type: convs.append(get_norm(norm_type, c1)) if act_type: convs.append(get_activation(act_type)) # pointwise conv convs.append(get_conv2d(c1, c2, k=1, p=0, s=1, d=d, g=1, bias=add_bias)) if norm_type: convs.append(get_norm(norm_type, c2)) if act_type: convs.append(get_activation(act_type)) else: convs.append(get_conv2d(c1, c2, k=k, p=p, s=s, d=d, g=1, bias=add_bias)) if norm_type: convs.append(get_norm(norm_type, c2)) if act_type: convs.append(get_activation(act_type)) self.convs = nn.Sequential(*convs) def forward(self, x): return self.convs(x) # ---------------------------- Core Modules ---------------------------- ## Scale Modulation Block class SMBlock(nn.Module): def __init__(self, in_dim, out_dim, act_type='silu', norm_type='BN', depthwise=False): super(SMBlock, self).__init__() # -------------- Basic parameters -------------- self.in_dim = in_dim self.inter_dim = in_dim // 2 # -------------- Network parameters -------------- self.cv1 = Conv(self.inter_dim, self.inter_dim, k=1, act_type=act_type, norm_type=norm_type) self.cv2 = Conv(self.inter_dim, self.inter_dim, k=1, act_type=act_type, norm_type=norm_type) ## Scale Modulation self.sm1 = nn.Sequential( Conv(self.inter_dim, self.inter_dim, k=1, act_type=act_type, norm_type=norm_type), Conv(self.inter_dim, self.inter_dim, k=3, p=1, act_type=act_type, norm_type=norm_type, depthwise=depthwise) ) self.sm2 = nn.Sequential( Conv(self.inter_dim, self.inter_dim, k=1, act_type=act_type, norm_type=norm_type), Conv(self.inter_dim, self.inter_dim, k=5, p=2, act_type=act_type, norm_type=norm_type, depthwise=depthwise) ) self.sm3 = nn.Sequential( Conv(self.inter_dim, self.inter_dim, k=1, act_type=act_type, norm_type=norm_type), Conv(self.inter_dim, self.inter_dim, k=7, p=3, act_type=act_type, norm_type=norm_type, depthwise=depthwise) ) ## Aggregation proj self.sm_aggregation = Conv(self.inter_dim*3, self.inter_dim, k=1, act_type=act_type, norm_type=norm_type) # Output proj self.out_proj = None if in_dim != out_dim: self.out_proj = Conv(self.inter_dim*2, out_dim, k=1, act_type=act_type, norm_type=norm_type) def channel_shuffle(self, x, groups): # type: (torch.Tensor, int) -> torch.Tensor batchsize, num_channels, height, width = x.data.size() per_group_dim = num_channels // groups # reshape x = x.view(batchsize, groups, per_group_dim, height, width) x = torch.transpose(x, 1, 2).contiguous() # flatten x = x.view(batchsize, -1, height, width) return x def forward(self, x): """ Input: x: (Tensor) -> [B, C_in, H, W] Output: out: (Tensor) -> [B, C_out, H, W] """ x1, x2 = torch.chunk(x, 2, dim=1) # branch-1 x1 = self.cv1(x1) # branch-2 x2 = self.cv2(x2) x2 = torch.cat([self.sm1(x2), self.sm2(x2), self.sm3(x2)], dim=1) x2 = self.sm_aggregation(x2) # channel shuffle out = torch.cat([x1, x2], dim=1) out = self.channel_shuffle(out, groups=2) if self.out_proj: out = self.out_proj(out) return out ## DownSample Block class DSBlock(nn.Module): def __init__(self, in_dim, act_type='silu', norm_type='BN', depthwise=False): super().__init__() # branch-1 self.maxpool = nn.MaxPool2d((2, 2), 2) # branch-2 inter_dim = in_dim // 2 self.sm1 = Conv(inter_dim, inter_dim, k=3, p=1, s=2, act_type=act_type, norm_type=norm_type, depthwise=depthwise) self.sm2 = Conv(inter_dim, inter_dim, k=5, p=2, s=2, act_type=act_type, norm_type=norm_type, depthwise=depthwise) self.sm3 = Conv(inter_dim, inter_dim, k=7, p=3, s=2, act_type=act_type, norm_type=norm_type, depthwise=depthwise) self.sm_aggregation = Conv(inter_dim*3, inter_dim*3, k=1, act_type=act_type, norm_type=norm_type) def channel_shuffle(self, x, groups): # type: (torch.Tensor, int) -> torch.Tensor batchsize, num_channels, height, width = x.data.size() per_group_dim = num_channels // groups # reshape x = x.view(batchsize, groups, per_group_dim, height, width) x = torch.transpose(x, 1, 2).contiguous() # flatten x = x.view(batchsize, -1, height, width) return x def forward(self, x): """ Input: x: (Tensor) -> [B, C, H, W] Output: out: (Tensor) -> [B, 2C, H/2, W/2] """ x1, x2 = torch.chunk(x, 2, dim=1) # branch-1 x1 = self.maxpool(x1) # branch-2 x2 = torch.cat([self.sm1(x2), self.sm2(x2), self.sm3(x2)], dim=1) x2 = self.sm_aggregation(x2) # channel shuffle out = torch.cat([x1, x2], dim=1) out = self.channel_shuffle(out, groups=4) return out # ---------------------------- FPN Modules ---------------------------- ## build fpn's core block def build_fpn_block(cfg, in_dim, out_dim): if cfg['fpn_core_block'] == 'smblock': layer = SMBlock(in_dim=in_dim, out_dim=out_dim, act_type=cfg['fpn_act'], norm_type=cfg['fpn_norm'], depthwise=cfg['fpn_depthwise'] ) return layer ## build fpn's reduce layer def build_reduce_layer(cfg, in_dim, out_dim): if cfg['fpn_reduce_layer'] == 'conv': layer = Conv(in_dim, out_dim, k=1, act_type=cfg['fpn_act'], norm_type=cfg['fpn_norm']) return layer ## build fpn's downsample layer def build_downsample_layer(cfg, in_dim, out_dim): if cfg['fpn_downsample_layer'] == 'conv': layer = Conv(in_dim, out_dim, k=3, s=2, p=1, act_type=cfg['fpn_act'], norm_type=cfg['fpn_norm'], depthwise=cfg['fpn_depthwise']) elif cfg['fpn_downsample_layer'] == 'maxpool': assert in_dim == out_dim layer = nn.MaxPool2d((2, 2), stride=2) return layer