import torch import torch.nn as nn try: from .lodet_basic import Conv, SMBlock, DSBlock except: from lodet_basic import Conv, SMBlock, DSBlock model_urls = { 'smnet': None, } # ---------------------------- Backbones ---------------------------- class ScaleModulationNet(nn.Module): def __init__(self, act_type='silu', norm_type='BN', depthwise=False): super(ScaleModulationNet, self).__init__() self.feat_dims = [64, 128, 256] # P1/2 self.layer_1 = nn.Sequential( Conv(3, 16, k=3, p=1, s=2, act_type=act_type, norm_type=norm_type), Conv(16, 16, k=3, p=1, act_type=act_type, norm_type=norm_type, depthwise=depthwise), ) # P2/4 self.layer_2 = nn.Sequential( DSBlock(16, act_type, norm_type, depthwise), SMBlock(32, 32, act_type, norm_type, depthwise) ) # P3/8 self.layer_3 = nn.Sequential( DSBlock(32, act_type, norm_type, depthwise), SMBlock(64, 64, act_type, norm_type, depthwise) ) # P4/16 self.layer_4 = nn.Sequential( DSBlock(64, act_type, norm_type, depthwise), SMBlock(128, 128, act_type, norm_type, depthwise) ) # P5/32 self.layer_5 = nn.Sequential( DSBlock(128, act_type, norm_type, depthwise), SMBlock(256, 256, act_type, norm_type, depthwise) ) def forward(self, x): c1 = self.layer_1(x) c2 = self.layer_2(c1) c3 = self.layer_3(c2) c4 = self.layer_4(c3) c5 = self.layer_5(c4) outputs = [c3, c4, c5] return outputs # ---------------------------- Functions ---------------------------- ## load pretrained weight def load_weight(model, model_name): # load weight print('Loading pretrained weight ...') url = model_urls[model_name] if url is not None: checkpoint = torch.hub.load_state_dict_from_url( url=url, map_location="cpu", check_hash=True) # checkpoint state dict checkpoint_state_dict = checkpoint.pop("model") # model state dict model_state_dict = model.state_dict() # check for k in list(checkpoint_state_dict.keys()): if k in model_state_dict: shape_model = tuple(model_state_dict[k].shape) shape_checkpoint = tuple(checkpoint_state_dict[k].shape) if shape_model != shape_checkpoint: checkpoint_state_dict.pop(k) else: checkpoint_state_dict.pop(k) print(k) model.load_state_dict(checkpoint_state_dict) else: print('No pretrained for {}'.format(model_name)) return model ## build SMnet def build_backbone(cfg, pretrained=False): # model backbone = ScaleModulationNet( act_type=cfg['bk_act'], norm_type=cfg['bk_norm'], depthwise=cfg['bk_dpw'] ) # check whether to load imagenet pretrained weight if pretrained: backbone = load_weight(backbone, model_name='smnet') feat_dims = backbone.feat_dims return backbone, feat_dims if __name__ == '__main__': import time from thop import profile cfg = { 'pretrained': True, 'bk_act': 'silu', 'bk_norm': 'BN', 'bk_dpw': True, } model, feats = build_backbone(cfg) x = torch.randn(1, 3, 640, 640) t0 = time.time() outputs = model(x) t1 = time.time() print('Time: ', t1 - t0) for out in outputs: print(out.shape) print('==============================') flops, params = profile(model, inputs=(x, ), verbose=False) print('==============================') print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2)) print('Params : {:.2f} M'.format(params / 1e6))