import torch import torch.nn as nn try: from .yolov5_basic import Conv, CSPBlock from .yolov5_neck import SPPF except: from yolov5_basic import Conv, CSPBlock from yolov5_neck import SPPF # CSPDarkNet class CSPDarkNet(nn.Module): def __init__(self, depth=1.0, width=1.0, act_type='silu', norm_type='BN', depthwise=False): super(CSPDarkNet, self).__init__() self.feat_dims = [round(64 * width), round(128 * width), round(256 * width), round(512 * width), round(1024 * width)] # P1/2 self.layer_1 = Conv(3, self.feat_dims[0], k=6, p=2, s=2, act_type=act_type, norm_type=norm_type, depthwise=depthwise) # P2/4 self.layer_2 = nn.Sequential( Conv(self.feat_dims[0], self.feat_dims[1], k=3, p=1, s=2, act_type=act_type, norm_type=norm_type, depthwise=depthwise), CSPBlock(in_dim = self.feat_dims[1], out_dim = self.feat_dims[1], expand_ratio = 0.5, nblocks = round(3*depth), shortcut = True, act_type = act_type, norm_type = norm_type, depthwise = depthwise) ) # P3/8 self.layer_3 = nn.Sequential( Conv(self.feat_dims[1], self.feat_dims[2], k=3, p=1, s=2, act_type=act_type, norm_type=norm_type, depthwise=depthwise), CSPBlock(in_dim = self.feat_dims[2], out_dim = self.feat_dims[2], expand_ratio = 0.5, nblocks = round(9*depth), shortcut = True, act_type = act_type, norm_type = norm_type, depthwise = depthwise) ) # P4/16 self.layer_4 = nn.Sequential( Conv(self.feat_dims[2], self.feat_dims[3], k=3, p=1, s=2, act_type=act_type, norm_type=norm_type, depthwise=depthwise), CSPBlock(in_dim = self.feat_dims[3], out_dim = self.feat_dims[3], expand_ratio = 0.5, nblocks = round(9*depth), shortcut = True, act_type = act_type, norm_type = norm_type, depthwise = depthwise) ) # P5/32 self.layer_5 = nn.Sequential( Conv(self.feat_dims[3], self.feat_dims[4], k=3, p=1, s=2, act_type=act_type, norm_type=norm_type, depthwise=depthwise), SPPF(self.feat_dims[4], self.feat_dims[4], expand_ratio=0.5), CSPBlock(in_dim = self.feat_dims[4], out_dim = self.feat_dims[4], expand_ratio = 0.5, nblocks = round(3*depth), shortcut = True, act_type = act_type, norm_type = norm_type, depthwise = depthwise) ) def forward(self, x): c1 = self.layer_1(x) c2 = self.layer_2(c1) c3 = self.layer_3(c2) c4 = self.layer_4(c3) c5 = self.layer_5(c4) outputs = [c3, c4, c5] return outputs # ---------------------------- Functions ---------------------------- ## build CSPDarkNet def build_backbone(cfg): backbone = CSPDarkNet(cfg['depth'], cfg['width'], cfg['bk_act'], cfg['bk_norm'], cfg['bk_dpw']) feat_dims = backbone.feat_dims[-3:] return backbone, feat_dims if __name__ == '__main__': import time from thop import profile cfg = { 'pretrained': False, 'bk_act': 'lrelu', 'bk_norm': 'BN', 'bk_dpw': False, 'p6_feat': False, 'p7_feat': False, 'width': 1.0, 'depth': 1.0, } model, feats = build_backbone(cfg) x = torch.randn(1, 3, 224, 224) t0 = time.time() outputs = model(x) t1 = time.time() print('Time: ', t1 - t0) for out in outputs: print(out.shape) x = torch.randn(1, 3, 224, 224) print('==============================') flops, params = profile(model, inputs=(x, ), verbose=False) print('==============================') print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2)) print('Params : {:.2f} M'.format(params / 1e6))