# PyTorch_YOLO_Tutorial YOLO Tutorial English | [简体中文](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/blob/main/README_CN.md) # Introduction Here is the source code for an introduction to YOLO. We adopted the core concepts of **YOLOv1~v4**, **YOLOX** and **YOLOv7** for this project and made the necessary adjustments. By learning how to construct the well-known YOLO detector, we hope that newcomers can enter the field of object detection without any difficulty. **Book**: The technical books that go along with this project's code is being reviewed, please be patient. ## Requirements - We recommend you to use Anaconda to create a conda environment: ```Shell conda create -n yolo python=3.6 ``` - Then, activate the environment: ```Shell conda activate yolo ``` - Requirements: ```Shell pip install -r requirements.txt ``` My environment: - PyTorch = 1.9.1 - Torchvision = 0.10.1 At least, please make sure your torch is version 1.x. ## Training Configuration | Configuration | | |-------------------------|----------------------------| | Per GPU Batch Size | 16 | | Init Lr | 0.01 | | Warmup Scheduler | Linear | | Lr Scheduler | Linear | | Optimizer | SGD | | Multi Scale Train | True (320 ~ 640) | ## Experiments ### VOC - Download VOC. ```Shell cd cd dataset/scripts/ sh VOC2007.sh sh VOC2012.sh ``` - Check VOC ```Shell cd python dataset/voc.py ``` - Train on VOC For example: ```Shell python train.py --cuda -d voc --root path/to/VOCdevkit -v yolov1 -bs 16 --max_epoch 150 --wp_epoch 1 --eval_epoch 10 --fp16 --ema --multi_scale ``` | Model | Backbone | Scale | IP | Epoch | APval
0.5 | FPS3090
FP32-bs1 | Weight | |--------------|---------------------|-------|------|-------|-------------------|--------------------------|--------| | YOLOv1 | ResNet-18 | 640 | √ | 150 | 76.7 | | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolov1_voc.pth) | | YOLOv2 | DarkNet-19 | 640 | √ | 150 | 79.8 | | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolov2_voc.pth) | | YOLOv3 | DarkNet-53 | 640 | √ | 150 | 82.0 | | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolov3_voc.pth) | | YOLOv4 | CSPDarkNet-53 | 640 | √ | 150 | 83.6 | | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolov4_voc.pth) | | YOLOX-L | CSPDarkNet-L | 640 | √ | 150 | 84.6 | | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolox_voc.pth) | | YOLOv7-Large | ELANNet-Large | 640 | √ | 150 | 86.0 | | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolov7_large_voc.pth) | *All models are trained with ImageNet pretrained weight (IP). All FLOPs are measured with a 640x640 image size on VOC2007 test. The FPS is measured with batch size 1 on 3090 GPU from the model inference to the NMS operation.* ### COCO - Download COCO. ```Shell cd cd dataset/scripts/ sh COCO2017.sh ``` - Check COCO ```Shell cd python dataset/coco.py ``` - Train on COCO For example: ```Shell python train.py --cuda -d coco --root path/to/COCO -v yolov1 -bs 16 --max_epoch 150 --wp_epoch 1 --eval_epoch 10 --fp16 --ema --multi_scale ``` * Detectors reproduced in my book | Model | Backbone | Scale | Epoch | FPS | APval
0.5:0.95 | APval
0.5 | FLOPs
(G) | Params
(M) | Weight | |---------------|--------------------|-------|-------|-------|------------------------|-------------------|-------------------|--------------------|--------| | YOLOv1 | ResNet-18 | 640 | 150 | | 27.9 | 47.5 | 37.8 | 21.3 | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolov1_coco.pth) | | YOLOv2 | DarkNet-19 | 640 | 150 | | 32.7 | 50.9 | 53.9 | 30.9 | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolov2_coco.pth) | | YOLOv3 | DarkNet-53 | 640 | 250 | | 42.9 | 63.5 | 167.4 | 54.9 | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolov3_coco.pth) | | YOLOv4 | CSPDarkNet-53 | 640 | 250 | | 46.6 | 65.8 | 162.7 | 61.5 | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolov4_coco.pth) | | YOLOX-L | CSPDarkNet-L | 640 | 300 | | 46.6 | 66.1 | 155.4 | 54.2 | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/yolox_coco.pth) | | YOLOv7-Tiny | ELANNet-Tiny | 640 | 300 | | | | 22.9 | 8.1 | | | YOLOv7-Large | ELANNet-Large | 640 | 300 | | | | 144.6 | 44.0 | | - *All models are trained with ImageNet pretrained weight (IP). All FLOPs are measured with a 640x640 image size on COCO val2017. The FPS is measured with batch size 1 on 3090 GPU from the model inference to the NMS operation.* - *Due to my limited computing resources, I had to abandon training on other YOLO detectors, including YOLOv7-Huge and YOLOv8-Nano~Large. If you are interested in these models and have trained them using the code from this project, I would greatly appreciate it if you could share the trained weight files with me.* ## Train ### Single GPU ```Shell sh train.sh ``` You can change the configurations of `train.sh`, according to your own situation. You also can add `--vis_tgt` to check the images and targets during the training stage. For example: ```Shell python train.py --cuda -d coco --root path/to/coco -v yolov1 --vis_tgt ``` ### Multi GPUs ```Shell sh train_ddp.sh ``` You can change the configurations of `train_ddp.sh`, according to your own situation. **In the event of a training interruption**, you can pass `--resume` the latest training weight path (`None` by default) to resume training. For example: ```Shell python train.py \ --cuda \ -d coco \ -v yolov1 \ -bs 16 \ --max_epoch 300 \ --wp_epoch 3 \ --eval_epoch 10 \ --ema \ --fp16 \ --resume weights/coco/yolov1/yolov1_epoch_151_39.24.pth ``` Then, training will continue from 151 epoch. ## Test ```Shell python test.py -d coco \ --cuda \ -v yolov1 \ --img_size 640 \ --weight path/to/weight \ --root path/to/dataset/ \ --show ``` For YOLOv7, since it uses the RepConv in PaFPN, you can add `--fuse_repconv` to fuse the RepConv block. ```Shell python test.py -d coco \ --cuda \ -v yolov7_large \ --fuse_repconv \ --img_size 640 \ --weight path/to/weight \ --root path/to/dataset/ \ --show ``` ## Evaluation ```Shell python eval.py -d coco-val \ --cuda \ -v yolov1 \ --img_size 640 \ --weight path/to/weight \ --root path/to/dataset/ \ --show ``` ## Demo I have provide some images in `data/demo/images/`, so you can run following command to run a demo: ```Shell python demo.py --mode image \ --path_to_img data/demo/images/ \ -v yolov1 \ --img_size 640 \ --cuda \ --weight path/to/weight ``` If you want run a demo of streaming video detection, you need to set `--mode` to `video`, and give the path to video `--path_to_vid`。 ```Shell python demo.py --mode video \ --path_to_img data/demo/videos/your_video \ -v yolov1 \ --img_size 640 \ --cuda \ --weight path/to/weight ``` If you want run video detection with your camera, you need to set `--mode` to `camera`。 ```Shell python demo.py --mode camera \ -v yolov1 \ --img_size 640 \ --cuda \ --weight path/to/weight ```