import torch import torch.nn as nn try: from .yolov8_basic import Conv except: from yolov8_basic import Conv # Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher class SPPF(nn.Module): """ This code referenced to https://github.com/ultralytics/yolov5 """ def __init__(self, cfg, in_dim, out_dim, expand_ratio=0.5): super().__init__() inter_dim = int(in_dim * expand_ratio) self.out_dim = out_dim self.cv1 = Conv(in_dim, inter_dim, k=1, act_type=cfg['neck_act'], norm_type=cfg['neck_norm']) self.cv2 = Conv(inter_dim * 4, out_dim, k=1, act_type=cfg['neck_act'], norm_type=cfg['neck_norm']) self.m = nn.MaxPool2d(kernel_size=cfg['pooling_size'], stride=1, padding=cfg['pooling_size'] // 2) def forward(self, x): x = self.cv1(x) y1 = self.m(x) y2 = self.m(y1) return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1)) # SPPF block with CSP module class SPPFBlockCSP(nn.Module): """ CSP Spatial Pyramid Pooling Block """ def __init__(self, cfg, in_dim, out_dim, expand_ratio): super(SPPFBlockCSP, self).__init__() inter_dim = int(in_dim * expand_ratio) self.out_dim = out_dim self.cv1 = Conv(in_dim, inter_dim, k=1, act_type=cfg['neck_act'], norm_type=cfg['neck_norm']) self.cv2 = Conv(in_dim, inter_dim, k=1, act_type=cfg['neck_act'], norm_type=cfg['neck_norm']) self.m = nn.Sequential( Conv(inter_dim, inter_dim, k=3, p=1, act_type=cfg['neck_act'], norm_type=cfg['neck_norm'], depthwise=cfg['neck_depthwise']), SPPF(cfg, inter_dim, inter_dim, expand_ratio=1.0), Conv(inter_dim, inter_dim, k=3, p=1, act_type=cfg['neck_act'], norm_type=cfg['neck_norm'], depthwise=cfg['neck_depthwise']) ) self.cv3 = Conv(inter_dim * 2, self.out_dim, k=1, act_type=cfg['neck_act'], norm_type=cfg['neck_norm']) def forward(self, x): x1 = self.cv1(x) x2 = self.cv2(x) x3 = self.m(x2) y = self.cv3(torch.cat([x1, x3], dim=1)) return y def build_neck(cfg, in_dim, out_dim): model = cfg['neck'] print('==============================') print('Neck: {}'.format(model)) # build neck if model == 'sppf': neck = SPPF(cfg, in_dim, out_dim, cfg['neck_expand_ratio']) elif model == 'csp_sppf': neck = SPPFBlockCSP(cfg, in_dim, out_dim, cfg['neck_expand_ratio']) return neck if __name__ == '__main__': import time from thop import profile cfg = { ## Neck: SPP 'neck': 'sppf', 'neck_expand_ratio': 0.5, 'pooling_size': 5, 'neck_act': 'silu', 'neck_norm': 'BN', 'neck_depthwise': False, } in_dim = 512 out_dim = 512 # Head-1 model = build_neck(cfg, in_dim, out_dim) feat = torch.randn(1, in_dim, 20, 20) t0 = time.time() outputs = model(feat) t1 = time.time() print('Time: ', t1 - t0) # for out in outputs: # print(out.shape) print('==============================') flops, params = profile(model, inputs=(feat, ), verbose=False) print('==============================') print('FPN: GFLOPs : {:.2f}'.format(flops / 1e9 * 2)) print('FPN: Params : {:.2f} M'.format(params / 1e6))