# YOLOv3: | Model | Backbone | Batch | Scale | APval
0.5:0.95 | APval
0.5 | FLOPs
(G) | Params
(M) | Weight | |-------------|--------------|-------|-------|------------------------|-------------------|-------------------|--------------------|--------| | YOLOv3-Tiny | DarkNet-Tiny | 1xb16 | 640 | 25.4 | 43.4 | 7.0 | 2.3 | [ckpt](https://github.com/yjh0410/RT-ODLab/releases/download/yolo_tutorial_ckpt/yolov3_t_coco.pth) | | YOLOv3 | DarkNet-53 | 1xb16 | 640 | 42.9 | 63.5 | 167.4 | 54.9 | [ckpt](https://github.com/yjh0410/RT-ODLab/releases/download/yolo_tutorial_ckpt/yolov3_coco.pth) | - For training, we train YOLOv3 and YOLOv3-Tiny with 250 epochs on COCO. - For data augmentation, we use the large scale jitter (LSJ), Mosaic augmentation and Mixup augmentation, following the setting of [YOLOv5](https://github.com/ultralytics/yolov5). - For optimizer, we use SGD with momentum 0.937, weight decay 0.0005 and base lr 0.01. - For learning rate scheduler, we use linear decay scheduler. - For YOLOv3's structure, we use decoupled head, following the setting of [YOLOX](https://github.com/Megvii-BaseDetection/YOLOX). ## Train YOLOv3 ### Single GPU Taking training YOLOv3 on COCO as the example, ```Shell python train.py --cuda -d coco --root path/to/coco -m yolov3 -bs 16 -size 640 --wp_epoch 3 --max_epoch 300 --eval_epoch 10 --no_aug_epoch 20 --ema --fp16 --multi_scale ``` ### Multi GPU Taking training YOLOv3 on COCO as the example, ```Shell python -m torch.distributed.run --nproc_per_node=8 train.py --cuda -dist -d coco --root /data/datasets/ -m yolov3 -bs 128 -size 640 --wp_epoch 3 --max_epoch 300 --eval_epoch 10 --no_aug_epoch 20 --ema --fp16 --sybn --multi_scale --save_folder weights/ ``` ## Test YOLOv3 Taking testing YOLOv3 on COCO-val as the example, ```Shell python test.py --cuda -d coco --root path/to/coco -m yolov3 --weight path/to/yolov3.pth -size 640 -vt 0.4 --show ``` ## Evaluate YOLOv3 Taking evaluating YOLOv3 on COCO-val as the example, ```Shell python eval.py --cuda -d coco-val --root path/to/coco -m yolov3 --weight path/to/yolov3.pth ``` ## Demo ### Detect with Image ```Shell python demo.py --mode image --path_to_img path/to/image_dirs/ --cuda -m yolov3 --weight path/to/weight -size 640 -vt 0.4 --show ``` ### Detect with Video ```Shell python demo.py --mode video --path_to_vid path/to/video --cuda -m yolov3 --weight path/to/weight -size 640 -vt 0.4 --show --gif ``` ### Detect with Camera ```Shell python demo.py --mode camera --cuda -m yolov3 --weight path/to/weight -size 640 -vt 0.4 --show --gif ```