import torch import torch.nn as nn import torch.nn.functional as F from utils.box_ops import box_iou, bbox_iou # -------------------------- Basic Functions -------------------------- def select_candidates_in_gts(xy_centers, gt_bboxes, eps=1e-9): """select the positive anchors's center in gt Args: xy_centers (Tensor): shape(bs*n_max_boxes, num_total_anchors, 4) gt_bboxes (Tensor): shape(bs, n_max_boxes, 4) Return: (Tensor): shape(bs, n_max_boxes, num_total_anchors) """ n_anchors = xy_centers.size(0) bs, n_max_boxes, _ = gt_bboxes.size() _gt_bboxes = gt_bboxes.reshape([-1, 4]) xy_centers = xy_centers.unsqueeze(0).repeat(bs * n_max_boxes, 1, 1) gt_bboxes_lt = _gt_bboxes[:, 0:2].unsqueeze(1).repeat(1, n_anchors, 1) gt_bboxes_rb = _gt_bboxes[:, 2:4].unsqueeze(1).repeat(1, n_anchors, 1) b_lt = xy_centers - gt_bboxes_lt b_rb = gt_bboxes_rb - xy_centers bbox_deltas = torch.cat([b_lt, b_rb], dim=-1) bbox_deltas = bbox_deltas.reshape([bs, n_max_boxes, n_anchors, -1]) return (bbox_deltas.min(axis=-1)[0] > eps).to(gt_bboxes.dtype) def select_highest_overlaps(mask_pos, overlaps, n_max_boxes): """if an anchor box is assigned to multiple gts, the one with the highest iou will be selected. Args: mask_pos (Tensor): shape(bs, n_max_boxes, num_total_anchors) overlaps (Tensor): shape(bs, n_max_boxes, num_total_anchors) Return: target_gt_idx (Tensor): shape(bs, num_total_anchors) fg_mask (Tensor): shape(bs, num_total_anchors) mask_pos (Tensor): shape(bs, n_max_boxes, num_total_anchors) """ fg_mask = mask_pos.sum(axis=-2) if fg_mask.max() > 1: mask_multi_gts = (fg_mask.unsqueeze(1) > 1).repeat([1, n_max_boxes, 1]) max_overlaps_idx = overlaps.argmax(axis=1) is_max_overlaps = F.one_hot(max_overlaps_idx, n_max_boxes) is_max_overlaps = is_max_overlaps.permute(0, 2, 1).to(overlaps.dtype) mask_pos = torch.where(mask_multi_gts, is_max_overlaps, mask_pos) fg_mask = mask_pos.sum(axis=-2) target_gt_idx = mask_pos.argmax(axis=-2) return target_gt_idx, fg_mask , mask_pos def iou_calculator(box1, box2, eps=1e-9): """Calculate iou for batch Args: box1 (Tensor): shape(bs, n_max_boxes, 1, 4) box2 (Tensor): shape(bs, 1, num_total_anchors, 4) Return: (Tensor): shape(bs, n_max_boxes, num_total_anchors) """ box1 = box1.unsqueeze(2) # [N, M1, 4] -> [N, M1, 1, 4] box2 = box2.unsqueeze(1) # [N, M2, 4] -> [N, 1, M2, 4] px1y1, px2y2 = box1[:, :, :, 0:2], box1[:, :, :, 2:4] gx1y1, gx2y2 = box2[:, :, :, 0:2], box2[:, :, :, 2:4] x1y1 = torch.maximum(px1y1, gx1y1) x2y2 = torch.minimum(px2y2, gx2y2) overlap = (x2y2 - x1y1).clip(0).prod(-1) area1 = (px2y2 - px1y1).clip(0).prod(-1) area2 = (gx2y2 - gx1y1).clip(0).prod(-1) union = area1 + area2 - overlap + eps return overlap / union # -------------------------- Task Aligned Assigner -------------------------- class TaskAlignedAssigner(nn.Module): def __init__(self, topk=10, alpha=0.5, beta=6.0, eps=1e-9, num_classes=80): super(TaskAlignedAssigner, self).__init__() self.topk = topk self.num_classes = num_classes self.bg_idx = num_classes self.alpha = alpha self.beta = beta self.eps = eps @torch.no_grad() def forward(self, pd_scores, pd_bboxes, anc_points, gt_labels, gt_bboxes): """This code referenced to https://github.com/Nioolek/PPYOLOE_pytorch/blob/master/ppyoloe/assigner/tal_assigner.py Args: pd_scores (Tensor): shape(bs, num_total_anchors, num_classes) pd_bboxes (Tensor): shape(bs, num_total_anchors, 4) anc_points (Tensor): shape(num_total_anchors, 2) gt_labels (Tensor): shape(bs, n_max_boxes, 1) gt_bboxes (Tensor): shape(bs, n_max_boxes, 4) Returns: target_labels (Tensor): shape(bs, num_total_anchors) target_bboxes (Tensor): shape(bs, num_total_anchors, 4) target_scores (Tensor): shape(bs, num_total_anchors, num_classes) fg_mask (Tensor): shape(bs, num_total_anchors) """ self.bs = pd_scores.size(0) self.n_max_boxes = gt_bboxes.size(1) mask_pos, align_metric, overlaps = self.get_pos_mask( pd_scores, pd_bboxes, gt_labels, gt_bboxes, anc_points) target_gt_idx, fg_mask, mask_pos = select_highest_overlaps( mask_pos, overlaps, self.n_max_boxes) # assigned target target_labels, target_bboxes, target_scores = self.get_targets( gt_labels, gt_bboxes, target_gt_idx, fg_mask) # normalize align_metric *= mask_pos pos_align_metrics = align_metric.amax(axis=-1, keepdim=True) # b, max_num_obj pos_overlaps = (overlaps * mask_pos).amax(axis=-1, keepdim=True) # b, max_num_obj norm_align_metric = (align_metric * pos_overlaps / (pos_align_metrics + self.eps)).amax(-2).unsqueeze(-1) target_scores = target_scores * norm_align_metric return target_labels, target_bboxes, target_scores, fg_mask.bool(), target_gt_idx def get_pos_mask(self, pd_scores, pd_bboxes, gt_labels, gt_bboxes, anc_points): # get anchor_align metric, (b, max_num_obj, h*w) align_metric, overlaps = self.get_box_metrics(pd_scores, pd_bboxes, gt_labels, gt_bboxes) # get in_gts mask, (b, max_num_obj, h*w) mask_in_gts = select_candidates_in_gts(anc_points, gt_bboxes) # get topk_metric mask, (b, max_num_obj, h*w) mask_topk = self.select_topk_candidates(align_metric * mask_in_gts) # merge all mask to a final mask, (b, max_num_obj, h*w) mask_pos = mask_topk * mask_in_gts return mask_pos, align_metric, overlaps def get_box_metrics(self, pd_scores, pd_bboxes, gt_labels, gt_bboxes): ind = torch.zeros([2, self.bs, self.n_max_boxes], dtype=torch.long) # 2, b, max_num_obj ind[0] = torch.arange(end=self.bs).view(-1, 1).repeat(1, self.n_max_boxes) # b, max_num_obj ind[1] = gt_labels.long().squeeze(-1) # b, max_num_obj # get the scores of each grid for each gt cls bbox_scores = pd_scores[ind[0], :, ind[1]] # b, max_num_obj, h*w overlaps = bbox_iou(gt_bboxes.unsqueeze(2), pd_bboxes.unsqueeze(1), xywh=False).squeeze(3).clamp(0) align_metric = bbox_scores.pow(self.alpha) * overlaps.pow(self.beta) return align_metric, overlaps def select_topk_candidates(self, metrics, largest=True): """ Args: metrics: (b, max_num_obj, h*w). topk_mask: (b, max_num_obj, topk) or None """ num_anchors = metrics.shape[-1] # h*w # (b, max_num_obj, topk) topk_metrics, topk_idxs = torch.topk(metrics, self.topk, dim=-1, largest=largest) topk_mask = (topk_metrics.max(-1, keepdim=True)[0] > self.eps).tile([1, 1, self.topk]) # (b, max_num_obj, topk) topk_idxs[~topk_mask] = 0 # (b, max_num_obj, topk, h*w) -> (b, max_num_obj, h*w) is_in_topk = F.one_hot(topk_idxs, num_anchors).sum(-2) # filter invalid bboxes is_in_topk = torch.where(is_in_topk > 1, 0, is_in_topk) return is_in_topk.to(metrics.dtype) def get_targets(self, gt_labels, gt_bboxes, target_gt_idx, fg_mask): """ Args: gt_labels: (b, max_num_obj, 1) gt_bboxes: (b, max_num_obj, 4) target_gt_idx: (b, h*w) fg_mask: (b, h*w) """ # assigned target labels, (b, 1) batch_ind = torch.arange(end=self.bs, dtype=torch.int64, device=gt_labels.device)[..., None] target_gt_idx = target_gt_idx + batch_ind * self.n_max_boxes # (b, h*w) target_labels = gt_labels.long().flatten()[target_gt_idx] # (b, h*w) # assigned target boxes, (b, max_num_obj, 4) -> (b, h*w) target_bboxes = gt_bboxes.view(-1, 4)[target_gt_idx] # assigned target scores target_labels.clamp(0) target_scores = F.one_hot(target_labels, self.num_classes) # (b, h*w, 80) fg_scores_mask = fg_mask[:, :, None].repeat(1, 1, self.num_classes) # (b, h*w, 80) target_scores = torch.where(fg_scores_mask > 0, target_scores, 0) return target_labels, target_bboxes, target_scores # -------------------------- Aligned SimOTA Assigner -------------------------- class AlignedSimOTA(object): """ This code referenced to https://github.com/Megvii-BaseDetection/YOLOX/blob/main/yolox/models/yolo_head.py """ def __init__(self, num_classes, center_sampling_radius, topk_candidate ): self.num_classes = num_classes self.center_sampling_radius = center_sampling_radius self.topk_candidate = topk_candidate @torch.no_grad() def __call__(self, fpn_strides, anchors, pred_cls, pred_box, tgt_labels, tgt_bboxes): # [M,] strides_tensor = torch.cat([torch.ones_like(anchor_i[:, 0]) * stride_i for stride_i, anchor_i in zip(fpn_strides, anchors)], dim=-1) # List[F, M, 2] -> [M, 2] anchors = torch.cat(anchors, dim=0) num_anchor = anchors.shape[0] num_gt = len(tgt_labels) # ----------------------- Find inside points ----------------------- fg_mask, is_in_boxes_and_center = self.get_in_boxes_info( tgt_bboxes, anchors, strides_tensor, num_anchor, num_gt) cls_preds = pred_cls[fg_mask].float() # [Mp, C] box_preds = pred_box[fg_mask].float() # [Mp, 4] # ----------------------- Reg cost ----------------------- pair_wise_ious, _ = box_iou(tgt_bboxes, box_preds) # [N, Mp] reg_cost = -torch.log(pair_wise_ious + 1e-8) # [N, Mp] # ----------------------- Cls cost ----------------------- with torch.cuda.amp.autocast(enabled=False): # [Mp, C] -> [N, Mp, C] score_preds = cls_preds.sigmoid_().unsqueeze(0).repeat(num_gt, 1, 1) # prepare cls_target cls_targets = F.one_hot(tgt_labels.long(), self.num_classes).float() cls_targets = cls_targets.unsqueeze(1).repeat(1, score_preds.size(1), 1) # [N, Mp] cls_cost = F.binary_cross_entropy(score_preds, cls_targets, reduction="none").sum(-1) del score_preds #----------------------- Dynamic K-Matching ----------------------- cost_matrix = ( cls_cost + 3.0 * reg_cost + 100000.0 * (~is_in_boxes_and_center) ) # [N, Mp] ( assigned_labels, # [num_fg,] assigned_ious, # [num_fg,] assigned_indexs, # [num_fg,] ) = self.dynamic_k_matching( cost_matrix, pair_wise_ious, tgt_labels, num_gt, fg_mask ) del cls_cost, cost_matrix, pair_wise_ious, reg_cost return fg_mask, assigned_labels, assigned_ious, assigned_indexs def get_in_boxes_info( self, gt_bboxes, # [N, 4] anchors, # [M, 2] strides, # [M,] num_anchors, # M num_gt, # N ): # anchor center x_centers = anchors[:, 0] y_centers = anchors[:, 1] # [M,] -> [1, M] -> [N, M] x_centers = x_centers.unsqueeze(0).repeat(num_gt, 1) y_centers = y_centers.unsqueeze(0).repeat(num_gt, 1) # [N,] -> [N, 1] -> [N, M] gt_bboxes_l = gt_bboxes[:, 0].unsqueeze(1).repeat(1, num_anchors) # x1 gt_bboxes_t = gt_bboxes[:, 1].unsqueeze(1).repeat(1, num_anchors) # y1 gt_bboxes_r = gt_bboxes[:, 2].unsqueeze(1).repeat(1, num_anchors) # x2 gt_bboxes_b = gt_bboxes[:, 3].unsqueeze(1).repeat(1, num_anchors) # y2 b_l = x_centers - gt_bboxes_l b_r = gt_bboxes_r - x_centers b_t = y_centers - gt_bboxes_t b_b = gt_bboxes_b - y_centers bbox_deltas = torch.stack([b_l, b_t, b_r, b_b], 2) is_in_boxes = bbox_deltas.min(dim=-1).values > 0.0 is_in_boxes_all = is_in_boxes.sum(dim=0) > 0 # in fixed center center_radius = self.center_sampling_radius # [N, 2] gt_centers = (gt_bboxes[:, :2] + gt_bboxes[:, 2:]) * 0.5 # [1, M] center_radius_ = center_radius * strides.unsqueeze(0) gt_bboxes_l = gt_centers[:, 0].unsqueeze(1).repeat(1, num_anchors) - center_radius_ # x1 gt_bboxes_t = gt_centers[:, 1].unsqueeze(1).repeat(1, num_anchors) - center_radius_ # y1 gt_bboxes_r = gt_centers[:, 0].unsqueeze(1).repeat(1, num_anchors) + center_radius_ # x2 gt_bboxes_b = gt_centers[:, 1].unsqueeze(1).repeat(1, num_anchors) + center_radius_ # y2 c_l = x_centers - gt_bboxes_l c_r = gt_bboxes_r - x_centers c_t = y_centers - gt_bboxes_t c_b = gt_bboxes_b - y_centers center_deltas = torch.stack([c_l, c_t, c_r, c_b], 2) is_in_centers = center_deltas.min(dim=-1).values > 0.0 is_in_centers_all = is_in_centers.sum(dim=0) > 0 # in boxes and in centers is_in_boxes_anchor = is_in_boxes_all | is_in_centers_all is_in_boxes_and_center = ( is_in_boxes[:, is_in_boxes_anchor] & is_in_centers[:, is_in_boxes_anchor] ) return is_in_boxes_anchor, is_in_boxes_and_center def dynamic_k_matching( self, cost, pair_wise_ious, gt_classes, num_gt, fg_mask ): # Dynamic K # --------------------------------------------------------------- matching_matrix = torch.zeros_like(cost, dtype=torch.uint8) ious_in_boxes_matrix = pair_wise_ious n_candidate_k = min(self.topk_candidate, ious_in_boxes_matrix.size(1)) topk_ious, _ = torch.topk(ious_in_boxes_matrix, n_candidate_k, dim=1) dynamic_ks = torch.clamp(topk_ious.sum(1).int(), min=1) dynamic_ks = dynamic_ks.tolist() for gt_idx in range(num_gt): _, pos_idx = torch.topk( cost[gt_idx], k=dynamic_ks[gt_idx], largest=False ) matching_matrix[gt_idx][pos_idx] = 1 del topk_ious, dynamic_ks, pos_idx anchor_matching_gt = matching_matrix.sum(0) if (anchor_matching_gt > 1).sum() > 0: _, cost_argmin = torch.min(cost[:, anchor_matching_gt > 1], dim=0) matching_matrix[:, anchor_matching_gt > 1] *= 0 matching_matrix[cost_argmin, anchor_matching_gt > 1] = 1 fg_mask_inboxes = matching_matrix.sum(0) > 0 fg_mask[fg_mask.clone()] = fg_mask_inboxes assigned_indexs = matching_matrix[:, fg_mask_inboxes].argmax(0) assigned_labels = gt_classes[assigned_indexs] assigned_ious = (matching_matrix * pair_wise_ious).sum(0)[ fg_mask_inboxes ] return assigned_labels, assigned_ious, assigned_indexs