import torch import torch.nn as nn from torch import Tensor from typing import Callable, List, Optional, Type, Union try: from .basic import conv1x1, BasicBlock, Bottleneck except: from basic import conv1x1, BasicBlock, Bottleneck # IN1K pretrained weights pretrained_urls = { # ResNet series 'resnet18': None, 'resnet34': None, 'resnet50': None, 'resnet101': None, 'resnet152': None, # ShuffleNet series } # ----------------- Model functions ----------------- ## Build backbone network def build_backbone(cfg, pretrained): if 'resnet' in cfg['backbone']: # Build ResNet model, feats = build_resnet(cfg, pretrained) else: raise NotImplementedError("Unknown backbone: <>.".format(cfg['backbone'])) return model, feats ## Load pretrained weight def load_pretrained(model_name): return # ----------------- ResNet Backbone ----------------- class ResNet(nn.Module): def __init__(self, block: Type[Union[BasicBlock, Bottleneck]], layers: List[int], num_classes: int = 1000, zero_init_residual: bool = False, groups: int = 1, width_per_group: int = 64, replace_stride_with_dilation: Optional[List[bool]] = None, norm_layer: Optional[Callable[..., nn.Module]] = None, ) -> None: super().__init__() # --------------- Basic parameters ---------------- self.groups = groups self.base_width = width_per_group self.inplanes = 64 self.dilation = 1 self.zero_init_residual = zero_init_residual self.replace_stride_with_dilation = [False, False, False] if replace_stride_with_dilation is None else replace_stride_with_dilation if len(self.replace_stride_with_dilation) != 3: raise ValueError( "replace_stride_with_dilation should be None " f"or a 3-element tuple, got {self.replace_stride_with_dilation}" ) # --------------- Network parameters ---------------- self._norm_layer = nn.BatchNorm2d if norm_layer is None else norm_layer ## Stem layer self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = self._norm_layer(self.inplanes) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) ## Res Layer self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2, dilate=self.replace_stride_with_dilation[0]) self.layer3 = self._make_layer(block, 256, layers[2], stride=2, dilate=self.replace_stride_with_dilation[1]) self.layer4 = self._make_layer(block, 512, layers[3], stride=2, dilate=self.replace_stride_with_dilation[2]) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512 * block.expansion, num_classes) self._init_layer() def _init_layer(self): for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu") elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) if self.zero_init_residual: for m in self.modules(): if isinstance(m, Bottleneck) and m.bn3.weight is not None: nn.init.constant_(m.bn3.weight, 0) # type: ignore[arg-type] elif isinstance(m, BasicBlock) and m.bn2.weight is not None: nn.init.constant_(m.bn2.weight, 0) # type: ignore[arg-type] def _make_layer( self, block: Type[Union[BasicBlock, Bottleneck]], planes: int, blocks: int, stride: int = 1, dilate: bool = False, ) -> nn.Sequential: norm_layer = self._norm_layer downsample = None previous_dilation = self.dilation if dilate: self.dilation *= stride stride = 1 if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( conv1x1(self.inplanes, planes * block.expansion, stride), norm_layer(planes * block.expansion), ) layers = [] layers.append( block( self.inplanes, planes, stride, downsample, self.groups, self.base_width, previous_dilation, norm_layer ) ) self.inplanes = planes * block.expansion for _ in range(1, blocks): layers.append( block( self.inplanes, planes, groups=self.groups, base_width=self.base_width, dilation=self.dilation, norm_layer=norm_layer, ) ) return nn.Sequential(*layers) def forward(self, x: Tensor) -> Tensor: # See note [TorchScript super()] x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = torch.flatten(x, 1) x = self.fc(x) return x def _resnet(block: Type[Union[BasicBlock, Bottleneck]], layers: List[int], **kwargs) -> ResNet: return ResNet(block, layers, **kwargs) def build_resnet(cfg, pretrained=False, **kwargs): # ---------- Build ResNet ---------- if cfg['backbone'] == 'resnet18': model = _resnet(BasicBlock, [2, 2, 2, 2], **kwargs) feats = [128, 256, 512] elif cfg['backbone'] == 'resnet34': model = _resnet(BasicBlock, [3, 4, 6, 3], **kwargs) feats = [128, 256, 512] elif cfg['backbone'] == 'resnet50': model = _resnet(Bottleneck, [3, 4, 6, 3], **kwargs) feats = [512, 1024, 2048] elif cfg['backbone'] == 'resnet101': model = _resnet(Bottleneck, [3, 4, 23, 3], **kwargs) feats = [512, 1024, 2048] elif cfg['backbone'] == 'resnet152': model = _resnet(Bottleneck, [3, 8, 36, 3], **kwargs) feats = [512, 1024, 2048] # ---------- Load pretrained ---------- if pretrained: # TODO: load IN1K pretrained pass return model, feats # ----------------- ShuffleNet Backbone ----------------- ## TODO: Add shufflenet-v2