# RTCDet: My Empirical Study of Real-Time Convolutional Object Detectors. | Model | Scale | Batch | APtest
0.5:0.95 | APtest
0.5 | APval
0.5:0.95 | APval
0.5 | FLOPs
(G) | Params
(M) | Weight | |----------|-------|-------|-------------------------|--------------------|------------------------|-------------------|-------------------|--------------------|--------| | RTCDet-N | 640 | 8xb16 | | | | | | | | | RTCDet-T | 640 | 8xb16 | | | | | | | | | RTCDet-S | 640 | 8xb16 | | | 44.5 | 63.5 | 30.9 | 8.5 | [ckpt](https://github.com/yjh0410/RT-ODLab/releases/download/yolo_tutorial_ckpt/rtcdet_s_coco.pth) | | RTCDet-M | 640 | 8xb16 | | | 48.7 | 67.6 | 80.3 | 22.6 | [ckpt](https://github.com/yjh0410/RT-ODLab/releases/download/yolo_tutorial_ckpt/rtcdet_m_coco.pth) | | RTCDet-L | 640 | 8xb16 | | | | | | | | | RTCDet-X | 640 | 8xb16 | | | | | | | | | Model | Scale | Batch | APval
0.5:0.95 | APval
0.5 | FLOPs
(G) | Params
(M) | Weight | |----------|-------|-------|------------------------|-------------------|-------------------|--------------------|--------| | RTCDet-P | 320 | 8xb16 | | | | | - | | RTCDet-P | 416 | 8xb16 | | | | | - | | RTCDet-P | 512 | 8xb16 | | | | | - | | RTCDet-P | 640 | 8xb16 | | | | | - | - For training, we train my RTCDet series series with 300 epochs on COCO. - For data augmentation, we use the large scale jitter (LSJ), Mosaic augmentation and Mixup augmentation, following the setting of [YOLOX](https://github.com/ultralytics/yolov5), but we remove the rotation transformation which is used in YOLOX's strong augmentation. - For optimizer, we use AdamW with weight decay 0.05 and base per image lr 0.001 / 64. - For learning rate scheduler, we use linear decay scheduler. - Due to my limited computing resources, I can not train `RTCDet-X` with the setting of `batch size=128`. ## Train RTCDet ### Single GPU Taking training RTCDet-S on COCO as the example, ```Shell python train.py --cuda -d coco --root path/to/coco -m rtcdet_s -bs 16 -size 640 --wp_epoch 3 --max_epoch 300 --eval_epoch 10 --no_aug_epoch 20 --ema --fp16 --multi_scale ``` ### Multi GPU Taking training RTCDet-S on COCO as the example, ```Shell python -m torch.distributed.run --nproc_per_node=8 train.py --cuda -dist -d coco --root /data/datasets/ -m rtcdet_s -bs 128 -size 640 --wp_epoch 3 --max_epoch 300 --eval_epoch 10 --no_aug_epoch 20 --ema --fp16 --sybn --multi_scale --save_folder weights/ ``` ## Test RTCDet Taking testing RTCDet-S on COCO-val as the example, ```Shell python test.py --cuda -d coco --root path/to/coco -m rtcdet_s --weight path/to/rtcdet_s.pth -size 640 -vt 0.4 --show ``` ## Evaluate RTCDet Taking evaluating RTCDet-S on COCO-val as the example, ```Shell python eval.py --cuda -d coco-val --root path/to/coco -m rtcdet_s --weight path/to/rtcdet_s.pth ``` ## Demo ### Detect with Image ```Shell python demo.py --mode image --path_to_img path/to/image_dirs/ --cuda -m rtcdet_s --weight path/to/weight -size 640 -vt 0.4 --show ``` ### Detect with Video ```Shell python demo.py --mode video --path_to_vid path/to/video --cuda -m rtcdet_s --weight path/to/weight -size 640 -vt 0.4 --show --gif ``` ### Detect with Camera ```Shell python demo.py --mode camera --cuda -m rtcdet_s --weight path/to/weight -size 640 -vt 0.4 --show --gif ```