import torch import torch.nn as nn try: from .yolov8_basic import Conv except: from yolov8_basic import Conv # Single-level Head class SingleLevelHead(nn.Module): def __init__(self, in_dim, cls_head_dim, reg_head_dim, num_cls_head, num_reg_head, act_type, norm_type, depthwise): super().__init__() # --------- Basic Parameters ---------- self.in_dim = in_dim self.num_cls_head = num_cls_head self.num_reg_head = num_reg_head self.act_type = act_type self.norm_type = norm_type self.depthwise = depthwise # --------- Network Parameters ---------- ## cls head cls_feats = [] self.cls_head_dim = cls_head_dim for i in range(num_cls_head): if i == 0: cls_feats.append( Conv(in_dim, self.cls_head_dim, k=3, p=1, s=1, act_type=act_type, norm_type=norm_type, depthwise=depthwise) ) else: cls_feats.append( Conv(self.cls_head_dim, self.cls_head_dim, k=3, p=1, s=1, act_type=act_type, norm_type=norm_type, depthwise=depthwise) ) ## reg head reg_feats = [] self.reg_head_dim = reg_head_dim for i in range(num_reg_head): if i == 0: reg_feats.append( Conv(in_dim, self.reg_head_dim, k=3, p=1, s=1, act_type=act_type, norm_type=norm_type, depthwise=depthwise) ) else: reg_feats.append( Conv(self.reg_head_dim, self.reg_head_dim, k=3, p=1, s=1, act_type=act_type, norm_type=norm_type, depthwise=depthwise) ) self.cls_feats = nn.Sequential(*cls_feats) self.reg_feats = nn.Sequential(*reg_feats) def forward(self, x): """ in_feats: (Tensor) [B, C, H, W] """ cls_feats = self.cls_feats(x) reg_feats = self.reg_feats(x) return cls_feats, reg_feats # Multi-level Head class MultiLevelHead(nn.Module): def __init__(self, cfg, in_dims, num_levels=3, num_classes=80, reg_max=16): super().__init__() ## ----------- Network Parameters ----------- self.multi_level_heads = nn.ModuleList( [SingleLevelHead( in_dims[level], max(in_dims[0], min(num_classes, 100)), # cls head out_dim max(in_dims[0]//4, 16, 4*reg_max), # reg head out_dim cfg['num_cls_head'], cfg['num_reg_head'], cfg['head_act'], cfg['head_norm'], cfg['head_depthwise']) for level in range(num_levels) ]) # --------- Basic Parameters ---------- self.in_dims = in_dims self.cls_head_dim = self.multi_level_heads[0].cls_head_dim self.reg_head_dim = self.multi_level_heads[0].reg_head_dim def forward(self, feats): """ feats: List[(Tensor)] [[B, C, H, W], ...] """ cls_feats = [] reg_feats = [] for feat, head in zip(feats, self.multi_level_heads): # ---------------- Pred ---------------- cls_feat, reg_feat = head(feat) cls_feats.append(cls_feat) reg_feats.append(reg_feat) return cls_feats, reg_feats # build detection head def build_det_head(cfg, in_dims, num_levels=3, num_classes=80, reg_max=16): if cfg['head'] == 'decoupled_head': head = MultiLevelHead(cfg, in_dims, num_levels, num_classes, reg_max) return head if __name__ == '__main__': import time from thop import profile cfg = { 'head': 'decoupled_head', 'num_cls_head': 2, 'num_reg_head': 2, 'head_act': 'silu', 'head_norm': 'BN', 'head_depthwise': False, 'reg_max': 16, } fpn_dims = [256, 512, 512] cls_out_dim = 256 reg_out_dim = 64 # Head-1 model = build_det_head(cfg, fpn_dims, num_levels=3, num_classes=80, reg_max=16) print(model) fpn_feats = [torch.randn(1, fpn_dims[0], 80, 80), torch.randn(1, fpn_dims[1], 40, 40), torch.randn(1, fpn_dims[2], 20, 20)] t0 = time.time() outputs = model(fpn_feats) t1 = time.time() print('Time: ', t1 - t0) # for out in outputs: # print(out.shape) print('==============================') flops, params = profile(model, inputs=(fpn_feats, ), verbose=False) print('==============================') print('Head-1: GFLOPs : {:.2f}'.format(flops / 1e9 * 2)) print('Head-1: Params : {:.2f} M'.format(params / 1e6))