import torch import torch.nn as nn import numpy as np from utils.misc import multiclass_nms from .yolov2_backbone import build_backbone from .yolov2_neck import build_neck from .yolov2_head import build_head # YOLOv2 class YOLOv2(nn.Module): def __init__(self, cfg, device, num_classes=20, conf_thresh=0.01, nms_thresh=0.5, topk=100, trainable=False, deploy=False, nms_class_agnostic=False): super(YOLOv2, self).__init__() # ------------------- Basic parameters ------------------- self.cfg = cfg # 模型配置文件 self.device = device # cuda或者是cpu self.num_classes = num_classes # 类别的数量 self.trainable = trainable # 训练的标记 self.conf_thresh = conf_thresh # 得分阈值 self.nms_thresh = nms_thresh # NMS阈值 self.topk = topk # topk self.stride = 32 # 网络的最大步长 self.deploy = deploy self.nms_class_agnostic = nms_class_agnostic # ------------------- Anchor box ------------------- self.anchor_size = torch.as_tensor(cfg['anchor_size']).float().view(-1, 2) # [A, 2] self.num_anchors = self.anchor_size.shape[0] # ------------------- Network Structure ------------------- ## 主干网络 self.backbone, feat_dim = build_backbone( cfg['backbone'], trainable&cfg['pretrained']) ## 颈部网络 self.neck = build_neck(cfg, feat_dim, out_dim=512) head_dim = self.neck.out_dim ## 检测头 self.head = build_head(cfg, head_dim, head_dim, num_classes) ## 预测层 self.obj_pred = nn.Conv2d(head_dim, 1*self.num_anchors, kernel_size=1) self.cls_pred = nn.Conv2d(head_dim, num_classes*self.num_anchors, kernel_size=1) self.reg_pred = nn.Conv2d(head_dim, 4*self.num_anchors, kernel_size=1) if self.trainable: self.init_bias() def init_bias(self): # init bias init_prob = 0.01 bias_value = -torch.log(torch.tensor((1. - init_prob) / init_prob)) nn.init.constant_(self.obj_pred.bias, bias_value) nn.init.constant_(self.cls_pred.bias, bias_value) def generate_anchors(self, fmp_size): """ fmp_size: (List) [H, W] """ fmp_h, fmp_w = fmp_size # generate grid cells anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)]) anchor_xy = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2) # [HW, 2] -> [HW, A, 2] -> [M, 2] anchor_xy = anchor_xy.unsqueeze(1).repeat(1, self.num_anchors, 1) anchor_xy = anchor_xy.view(-1, 2).to(self.device) # [A, 2] -> [1, A, 2] -> [HW, A, 2] -> [M, 2] anchor_wh = self.anchor_size.unsqueeze(0).repeat(fmp_h*fmp_w, 1, 1) anchor_wh = anchor_wh.view(-1, 2).to(self.device) anchors = torch.cat([anchor_xy, anchor_wh], dim=-1) return anchors def decode_boxes(self, anchors, reg_pred): """ 将txtytwth转换为常用的x1y1x2y2形式。 """ # 计算预测边界框的中心点坐标和宽高 pred_ctr = (torch.sigmoid(reg_pred[..., :2]) + anchors[..., :2]) * self.stride pred_wh = torch.exp(reg_pred[..., 2:]) * anchors[..., 2:] # 将所有bbox的中心带你坐标和宽高换算成x1y1x2y2形式 pred_x1y1 = pred_ctr - pred_wh * 0.5 pred_x2y2 = pred_ctr + pred_wh * 0.5 pred_box = torch.cat([pred_x1y1, pred_x2y2], dim=-1) return pred_box def postprocess(self, obj_pred, cls_pred, reg_pred, anchors): """ Input: obj_pred: (Tensor) [H*W*A, 1] cls_pred: (Tensor) [H*W*A, C] reg_pred: (Tensor) [H*W*A, 4] """ # (H x W x A x C,) scores = torch.sqrt(obj_pred.sigmoid() * cls_pred.sigmoid()).flatten() # Keep top k top scoring indices only. num_topk = min(self.topk, reg_pred.size(0)) # torch.sort is actually faster than .topk (at least on GPUs) predicted_prob, topk_idxs = scores.sort(descending=True) topk_scores = predicted_prob[:num_topk] topk_idxs = topk_idxs[:num_topk] # filter out the proposals with low confidence score keep_idxs = topk_scores > self.conf_thresh scores = topk_scores[keep_idxs] topk_idxs = topk_idxs[keep_idxs] anchor_idxs = torch.div(topk_idxs, self.num_classes, rounding_mode='floor') labels = topk_idxs % self.num_classes reg_pred = reg_pred[anchor_idxs] anchors = anchors[anchor_idxs] # 解算边界框, 并归一化边界框: [H*W*A, 4] bboxes = self.decode_boxes(anchors, reg_pred) # to cpu & numpy scores = scores.cpu().numpy() labels = labels.cpu().numpy() bboxes = bboxes.cpu().numpy() # nms scores, labels, bboxes = multiclass_nms( scores, labels, bboxes, self.nms_thresh, self.num_classes, self.nms_class_agnostic) return bboxes, scores, labels @torch.no_grad() def inference(self, x): bs = x.shape[0] # 主干网络 feat = self.backbone(x) # 颈部网络 feat = self.neck(feat) # 检测头 cls_feat, reg_feat = self.head(feat) # 预测层 obj_pred = self.obj_pred(reg_feat) cls_pred = self.cls_pred(cls_feat) reg_pred = self.reg_pred(reg_feat) fmp_size = obj_pred.shape[-2:] # anchors: [M, 2] anchors = self.generate_anchors(fmp_size) # 对 pred 的size做一些view调整,便于后续的处理 # [B, A*C, H, W] -> [B, H, W, A*C] -> [B, H*W*A, C] obj_pred = obj_pred.permute(0, 2, 3, 1).contiguous().view(bs, -1, 1) cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(bs, -1, self.num_classes) reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(bs, -1, 4) # 测试时,笔者默认batch是1, # 因此,我们不需要用batch这个维度,用[0]将其取走。 obj_pred = obj_pred[0] # [H*W*A, 1] cls_pred = cls_pred[0] # [H*W*A, NC] reg_pred = reg_pred[0] # [H*W*A, 4] if self.deploy: scores = torch.sqrt(obj_pred.sigmoid() * cls_pred.sigmoid()) bboxes = self.decode_boxes(anchors, reg_pred) # [n_anchors_all, 4 + C] outputs = torch.cat([bboxes, scores], dim=-1) return outputs else: # post process bboxes, scores, labels = self.postprocess( obj_pred, cls_pred, reg_pred, anchors) return bboxes, scores, labels def forward(self, x): if not self.trainable: return self.inference(x) else: bs = x.shape[0] # 主干网络 feat = self.backbone(x) # 颈部网络 feat = self.neck(feat) # 检测头 cls_feat, reg_feat = self.head(feat) # 预测层 obj_pred = self.obj_pred(reg_feat) cls_pred = self.cls_pred(cls_feat) reg_pred = self.reg_pred(reg_feat) fmp_size = obj_pred.shape[-2:] # anchors: [M, 2] anchors = self.generate_anchors(fmp_size) # 对 pred 的size做一些view调整,便于后续的处理 # [B, A*C, H, W] -> [B, H, W, A*C] -> [B, H*W*A, C] obj_pred = obj_pred.permute(0, 2, 3, 1).contiguous().view(bs, -1, 1) cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(bs, -1, self.num_classes) reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(bs, -1, 4) # decode bbox box_pred = self.decode_boxes(anchors, reg_pred) # 网络输出 outputs = {"pred_obj": obj_pred, # (Tensor) [B, M, 1] "pred_cls": cls_pred, # (Tensor) [B, M, C] "pred_box": box_pred, # (Tensor) [B, M, 4] "stride": self.stride, # (Int) "fmp_size": fmp_size # (List) [fmp_h, fmp_w] } return outputs