# YOLOv4: | Model | Backbone | Batch | Scale | APval
0.5:0.95 | APval
0.5 | FLOPs
(G) | Params
(M) | Weight | |-------------|-----------------|-------|-------|------------------------|-------------------|-------------------|--------------------|--------| | YOLOv4-Tiny | CSPDarkNet-Tiny | 1xb16 | 640 | 31.0 | 49.1 | 8.1 | 2.9 | [ckpt](https://github.com/yjh0410/RT-ODLab/releases/download/yolo_tutorial_ckpt/yolov4_t_coco.pth) | | YOLOv4 | CSPDarkNet-53 | 1xb16 | 640 | 46.6 | 65.8 | 162.7 | 61.5 | [ckpt](https://github.com/yjh0410/RT-ODLab/releases/download/yolo_tutorial_ckpt/yolov4_coco.pth) | - For training, we train YOLOv4 and YOLOv4-Tiny with 250 epochs on COCO. - For data augmentation, we use the large scale jitter (LSJ), Mosaic augmentation and Mixup augmentation, following the setting of [YOLOv5](https://github.com/ultralytics/yolov5). - For optimizer, we use SGD with momentum 0.937, weight decay 0.0005 and base lr 0.01. - For learning rate scheduler, we use linear decay scheduler. - For YOLOv4's structure, we use decoupled head, following the setting of [YOLOX](https://github.com/Megvii-BaseDetection/YOLOX). ## Train YOLOv4 ### Single GPU Taking training YOLOv4 on COCO as the example, ```Shell python train.py --cuda -d coco --root path/to/coco -m yolov4 -bs 16 -size 640 --wp_epoch 3 --max_epoch 300 --eval_epoch 10 --no_aug_epoch 20 --ema --fp16 --multi_scale ``` ### Multi GPU Taking training YOLOv4 on COCO as the example, ```Shell python -m torch.distributed.run --nproc_per_node=8 train.py --cuda -dist -d coco --root /data/datasets/ -m yolov4 -bs 128 -size 640 --wp_epoch 3 --max_epoch 300 --eval_epoch 10 --no_aug_epoch 20 --ema --fp16 --sybn --multi_scale --save_folder weights/ ``` ## Test YOLOv4 Taking testing YOLOv4 on COCO-val as the example, ```Shell python test.py --cuda -d coco --root path/to/coco -m yolov4 --weight path/to/yolov4_coco.pth -size 640 --show ``` ## Evaluate YOLOv4 Taking evaluating YOLOv4 on COCO-val as the example, ```Shell python eval.py --cuda -d coco --root path/to/coco -m yolov4 --weight path/to/yolov4_coco.pth ``` ## Demo ### Detect with Image ```Shell python demo.py --mode image --path_to_img path/to/image_dirs/ --cuda -m yolov4 --weight path/to/yolov4_coco.pth -size 640 --show ``` ### Detect with Video ```Shell python demo.py --mode video --path_to_vid path/to/video --cuda -m yolov4 --weight path/to/yolov4_coco.pth -size 640 --show --gif ``` ### Detect with Camera ```Shell python demo.py --mode camera --cuda -m yolov4 --weight path/to/yolov4_coco.pth -size 640 --show --gif ```