import torch import torch.nn as nn def build_optimizer(cfg, model, base_lr=0.01, resume=None): print('==============================') print('Optimizer: {}'.format(cfg['optimizer'])) print('--base lr: {}'.format(base_lr)) print('--momentum: {}'.format(cfg['momentum'])) print('--weight_decay: {}'.format(cfg['weight_decay'])) g = [], [], [] # optimizer parameter groups bn = tuple(v for k, v in nn.__dict__.items() if 'Norm' in k) # normalization layers, i.e. BatchNorm2d() for v in model.modules(): if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter): # bias (no decay) g[2].append(v.bias) if isinstance(v, bn): # weight (no decay) g[1].append(v.weight) elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter): # weight (with decay) g[0].append(v.weight) if cfg['optimizer'] == 'adam': optimizer = torch.optim.Adam(g[2], lr=base_lr) # adjust beta1 to momentum elif cfg['optimizer'] == 'adamw': optimizer = torch.optim.AdamW(g[2], lr=base_lr, weight_decay=0.0) elif cfg['optimizer'] == 'sgd': optimizer = torch.optim.SGD(g[2], lr=base_lr, momentum=cfg['momentum'], nesterov=True) else: raise NotImplementedError('Optimizer {} not implemented.'.format(cfg['optimizer'])) optimizer.add_param_group({'params': g[0], 'weight_decay': cfg['weight_decay']}) # add g0 with weight_decay optimizer.add_param_group({'params': g[1], 'weight_decay': 0.0}) # add g1 (BatchNorm2d weights) start_epoch = 0 if resume is not None: print('keep training: ', resume) checkpoint = torch.load(resume) # checkpoint state dict checkpoint_state_dict = checkpoint.pop("optimizer") optimizer.load_state_dict(checkpoint_state_dict) start_epoch = checkpoint.pop("epoch") return optimizer, start_epoch