import math import torch def build_lr_scheduler(cfg, optimizer, epochs): """Build learning rate scheduler from cfg file.""" print('==============================') print('Lr Scheduler: {}'.format(cfg['scheduler'])) if cfg['scheduler'] == 'cosine': lf = lambda x: ((1 - math.cos(x * math.pi / epochs)) / 2) * (cfg['lrf'] - 1) + 1 elif cfg['scheduler'] == 'linear': lf = lambda x: (1 - x / epochs) * (1.0 - cfg['lrf']) + cfg['lrf'] else: print('unknown lr scheduler.') exit(0) scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lf) return scheduler, lf