import numpy as np import torch import torch.nn as nn # ---------------------------- 2D CNN ---------------------------- class SiLU(nn.Module): """export-friendly version of nn.SiLU()""" @staticmethod def forward(x): return x * torch.sigmoid(x) def get_conv2d(c1, c2, k, p, s, d, g, bias=False): conv = nn.Conv2d(c1, c2, k, stride=s, padding=p, dilation=d, groups=g, bias=bias) return conv def get_activation(act_type=None): if act_type == 'relu': return nn.ReLU(inplace=True) elif act_type == 'lrelu': return nn.LeakyReLU(0.1, inplace=True) elif act_type == 'mish': return nn.Mish(inplace=True) elif act_type == 'silu': return nn.SiLU(inplace=True) elif act_type is None: return nn.Identity() def get_norm(norm_type, dim): if norm_type == 'BN': return nn.BatchNorm2d(dim) elif norm_type == 'GN': return nn.GroupNorm(num_groups=32, num_channels=dim) # Basic conv layer class Conv(nn.Module): def __init__(self, c1, # in channels c2, # out channels k=1, # kernel size p=0, # padding s=1, # padding d=1, # dilation act_type='lrelu', # activation norm_type='BN', # normalization depthwise=False): super(Conv, self).__init__() convs = [] add_bias = False if norm_type else True p = p if d == 1 else d if depthwise: convs.append(get_conv2d(c1, c1, k=k, p=p, s=s, d=d, g=c1, bias=add_bias)) # depthwise conv if norm_type: convs.append(get_norm(norm_type, c1)) if act_type: convs.append(get_activation(act_type)) # pointwise conv convs.append(get_conv2d(c1, c2, k=1, p=0, s=1, d=d, g=1, bias=add_bias)) if norm_type: convs.append(get_norm(norm_type, c2)) if act_type: convs.append(get_activation(act_type)) else: convs.append(get_conv2d(c1, c2, k=k, p=p, s=s, d=d, g=1, bias=add_bias)) if norm_type: convs.append(get_norm(norm_type, c2)) if act_type: convs.append(get_activation(act_type)) self.convs = nn.Sequential(*convs) def forward(self, x): return self.convs(x) # ---------------------------- Modified YOLOv7's Modules ---------------------------- ## ELANBlock class ELANBlock(nn.Module): def __init__(self, in_dim, out_dim, expand_ratio=0.5, depth=1.0, act_type='silu', norm_type='BN', depthwise=False): super(ELANBlock, self).__init__() if isinstance(expand_ratio, float): inter_dim = int(in_dim * expand_ratio) inter_dim2 = inter_dim elif isinstance(expand_ratio, list): assert len(expand_ratio) == 2 e1, e2 = expand_ratio inter_dim = int(in_dim * e1) inter_dim2 = int(inter_dim * e2) # branch-1 self.cv1 = Conv(in_dim, inter_dim, k=1, act_type=act_type, norm_type=norm_type) # branch-2 self.cv2 = Conv(in_dim, inter_dim, k=1, act_type=act_type, norm_type=norm_type) # branch-3 for idx in range(round(3*depth)): if idx == 0: cv3 = [Conv(inter_dim, inter_dim2, k=3, p=1, act_type=act_type, norm_type=norm_type, depthwise=depthwise)] else: cv3.append(Conv(inter_dim2, inter_dim2, k=3, p=1, act_type=act_type, norm_type=norm_type, depthwise=depthwise)) self.cv3 = nn.Sequential(*cv3) # branch-4 self.cv4 = nn.Sequential(*[ Conv(inter_dim2, inter_dim2, k=3, p=1, act_type=act_type, norm_type=norm_type, depthwise=depthwise) for _ in range(round(3*depth)) ]) # output self.out = Conv(inter_dim*2 + inter_dim2*2, out_dim, k=1, act_type=act_type, norm_type=norm_type) def forward(self, x): """ Input: x: [B, C_in, H, W] Output: out: [B, C_out, H, W] """ x1 = self.cv1(x) x2 = self.cv2(x) x3 = self.cv3(x2) x4 = self.cv4(x3) # [B, C, H, W] -> [B, 2C, H, W] out = self.out(torch.cat([x1, x2, x3, x4], dim=1)) return out ## DownSample class DownSample(nn.Module): def __init__(self, in_dim, out_dim, act_type='silu', norm_type='BN', depthwise=False): super().__init__() inter_dim = out_dim // 2 self.mp = nn.MaxPool2d((2, 2), 2) self.cv1 = Conv(in_dim, inter_dim, k=1, act_type=act_type, norm_type=norm_type) self.cv2 = nn.Sequential( Conv(in_dim, inter_dim, k=1, act_type=act_type, norm_type=norm_type), Conv(inter_dim, inter_dim, k=3, p=1, s=2, act_type=act_type, norm_type=norm_type, depthwise=depthwise) ) def forward(self, x): """ Input: x: [B, C, H, W] Output: out: [B, C, H//2, W//2] """ # [B, C, H, W] -> [B, C//2, H//2, W//2] x1 = self.cv1(self.mp(x)) x2 = self.cv2(x) # [B, C, H//2, W//2] out = torch.cat([x1, x2], dim=1) return out # ---------------------------- FPN Modules ---------------------------- ## build fpn's core block def build_fpn_block(cfg, in_dim, out_dim): if cfg['fpn_core_block'] == 'ELANBlock': layer = ELANBlock(in_dim=in_dim, out_dim=out_dim, expand_ratio=[0.5, 0.5], depth=cfg['depth'], act_type=cfg['fpn_act'], norm_type=cfg['fpn_norm'], depthwise=cfg['fpn_depthwise'] ) return layer ## build fpn's reduce layer def build_reduce_layer(cfg, in_dim, out_dim): if cfg['fpn_reduce_layer'] == 'Conv': layer = Conv(in_dim, out_dim, k=1, act_type=cfg['fpn_act'], norm_type=cfg['fpn_norm']) return layer ## build fpn's downsample layer def build_downsample_layer(cfg, in_dim, out_dim): if cfg['fpn_downsample_layer'] == 'Conv': layer = Conv(in_dim, out_dim, k=3, s=2, p=1, act_type=cfg['fpn_act'], norm_type=cfg['fpn_norm']) return layer