import torch import torch.nn as nn try: from .yolov7_basic import Conv, ELANBlock, DownSample except: from yolov7_basic import Conv, ELANBlock, DownSample model_urls = { "elannet_tiny": "https://github.com/yjh0410/image_classification_pytorch/releases/download/weight/yolov7_elannet_tiny.pth", "elannet_large": "https://github.com/yjh0410/image_classification_pytorch/releases/download/weight/yolov7_elannet_large.pth", "elannet_huge": "https://github.com/yjh0410/image_classification_pytorch/releases/download/weight/yolov7_elannet_huge.pth", } # --------------------- ELANNet ----------------------- ## ELANNet-Tiny class ELANNet_Tiny(nn.Module): """ ELAN-Net of YOLOv7-Tiny. """ def __init__(self, act_type='silu', norm_type='BN', depthwise=False): super(ELANNet_Tiny, self).__init__() # -------------- Basic parameters -------------- self.feat_dims = [32, 64, 128, 256, 512] self.squeeze_ratios = [0.5, 0.5, 0.5, 0.5] # Stage-1 -> Stage-4 self.branch_depths = [1, 1, 1, 1] # Stage-1 -> Stage-4 # -------------- Network parameters -------------- ## P1/2 self.layer_1 = Conv(3, self.feat_dims[0], k=3, p=1, s=2, act_type=act_type, norm_type=norm_type, depthwise=depthwise) ## P2/4: Stage-1 self.layer_2 = nn.Sequential( Conv(self.feat_dims[0], self.feat_dims[1], k=3, p=1, s=2, act_type=act_type, norm_type=norm_type, depthwise=depthwise), ELANBlock(self.feat_dims[1], self.feat_dims[1], self.squeeze_ratios[0], self.branch_depths[0], act_type=act_type, norm_type=norm_type, depthwise=depthwise) ) ## P3/8: Stage-2 self.layer_3 = nn.Sequential( nn.MaxPool2d((2, 2), 2), ELANBlock(self.feat_dims[1], self.feat_dims[2], self.squeeze_ratios[1], self.branch_depths[1], act_type=act_type, norm_type=norm_type, depthwise=depthwise) ) ## P4/16: Stage-3 self.layer_4 = nn.Sequential( nn.MaxPool2d((2, 2), 2), ELANBlock(self.feat_dims[2], self.feat_dims[3], self.squeeze_ratios[2], self.branch_depths[2], act_type=act_type, norm_type=norm_type, depthwise=depthwise) ) ## P5/32: Stage-4 self.layer_5 = nn.Sequential( nn.MaxPool2d((2, 2), 2), ELANBlock(self.feat_dims[3], self.feat_dims[4], self.squeeze_ratios[3], self.branch_depths[3], act_type=act_type, norm_type=norm_type, depthwise=depthwise) ) def forward(self, x): c1 = self.layer_1(x) c2 = self.layer_2(c1) c3 = self.layer_3(c2) c4 = self.layer_4(c3) c5 = self.layer_5(c4) outputs = [c3, c4, c5] return outputs ## ELANNet-Large class ELANNet_Lagre(nn.Module): def __init__(self, act_type='silu', norm_type='BN', depthwise=False): super(ELANNet_Lagre, self).__init__() # -------------------- Basic parameters -------------------- self.feat_dims = [32, 64, 128, 256, 512, 1024, 1024] self.squeeze_ratios = [0.5, 0.5, 0.5, 0.25] # Stage-1 -> Stage-4 self.branch_depths = [2, 2, 2, 2] # Stage-1 -> Stage-4 # -------------------- Network parameters -------------------- ## P1/2 self.layer_1 = nn.Sequential( Conv(3, self.feat_dims[0], k=3, p=1, act_type=act_type, norm_type=norm_type, depthwise=depthwise), Conv(self.feat_dims[0], self.feat_dims[1], k=3, p=1, s=2, act_type=act_type, norm_type=norm_type, depthwise=depthwise), Conv(self.feat_dims[1], self.feat_dims[1], k=3, p=1, act_type=act_type, norm_type=norm_type, depthwise=depthwise) ) ## P2/4: Stage-1 self.layer_2 = nn.Sequential( Conv(self.feat_dims[1], self.feat_dims[2], k=3, p=1, s=2, act_type=act_type, norm_type=norm_type, depthwise=depthwise), ELANBlock(self.feat_dims[2], self.feat_dims[3], self.squeeze_ratios[0], self.branch_depths[0], act_type=act_type, norm_type=norm_type, depthwise=depthwise) ) ## P3/8: Stage-2 self.layer_3 = nn.Sequential( DownSample(self.feat_dims[3], self.feat_dims[3], act_type=act_type, norm_type=norm_type, depthwise=depthwise), ELANBlock(self.feat_dims[3], self.feat_dims[4], self.squeeze_ratios[1], self.branch_depths[1], act_type=act_type, norm_type=norm_type, depthwise=depthwise) ) ## P4/16: Stage-3 self.layer_4 = nn.Sequential( DownSample(self.feat_dims[4], self.feat_dims[4], act_type=act_type, norm_type=norm_type, depthwise=depthwise), ELANBlock(self.feat_dims[4], self.feat_dims[5], self.squeeze_ratios[2], self.branch_depths[2], act_type=act_type, norm_type=norm_type, depthwise=depthwise) ) ## P5/32: Stage-4 self.layer_5 = nn.Sequential( DownSample(self.feat_dims[5], self.feat_dims[5], act_type=act_type, norm_type=norm_type, depthwise=depthwise), ELANBlock(self.feat_dims[5], self.feat_dims[6], self.squeeze_ratios[3], self.branch_depths[3], act_type=act_type, norm_type=norm_type, depthwise=depthwise) ) def forward(self, x): c1 = self.layer_1(x) c2 = self.layer_2(c1) c3 = self.layer_3(c2) c4 = self.layer_4(c3) c5 = self.layer_5(c4) outputs = [c3, c4, c5] return outputs ## ELANNet-Huge class ELANNet_Huge(nn.Module): def __init__(self, act_type='silu', norm_type='BN', depthwise=False): super(ELANNet_Huge, self).__init__() # -------------------- Basic parameters -------------------- self.feat_dims = [40, 80, 160, 320, 640, 1280, 1280] self.squeeze_ratios = [0.5, 0.5, 0.5, 0.25] # Stage-1 -> Stage-4 self.branch_depths = [3, 3, 3, 3] # Stage-1 -> Stage-4 # -------------------- Network parameters -------------------- ## P1/2 self.layer_1 = nn.Sequential( Conv(3, self.feat_dims[0], k=3, p=1, act_type=act_type, norm_type=norm_type, depthwise=depthwise), Conv(self.feat_dims[0], self.feat_dims[1], k=3, p=1, s=2, act_type=act_type, norm_type=norm_type, depthwise=depthwise), Conv(self.feat_dims[1], self.feat_dims[1], k=3, p=1, act_type=act_type, norm_type=norm_type, depthwise=depthwise) ) ## P2/4: Stage-1 self.layer_2 = nn.Sequential( Conv(self.feat_dims[1], self.feat_dims[2], k=3, p=1, s=2, act_type=act_type, norm_type=norm_type, depthwise=depthwise), ELANBlock(self.feat_dims[2], self.feat_dims[3], self.squeeze_ratios[0], self.branch_depths[0], act_type=act_type, norm_type=norm_type, depthwise=depthwise) ) ## P3/8: Stage-2 self.layer_3 = nn.Sequential( DownSample(self.feat_dims[3], self.feat_dims[3], act_type=act_type, norm_type=norm_type, depthwise=depthwise), ELANBlock(self.feat_dims[3], self.feat_dims[4], self.squeeze_ratios[1], self.branch_depths[1], act_type=act_type, norm_type=norm_type, depthwise=depthwise) ) ## P4/16: Stage-3 self.layer_4 = nn.Sequential( DownSample(self.feat_dims[4], self.feat_dims[4], act_type=act_type, norm_type=norm_type, depthwise=depthwise), ELANBlock(self.feat_dims[4], self.feat_dims[5], self.squeeze_ratios[2], self.branch_depths[2], act_type=act_type, norm_type=norm_type, depthwise=depthwise) ) ## P5/32: Stage-4 self.layer_5 = nn.Sequential( DownSample(self.feat_dims[5], self.feat_dims[5], act_type=act_type, norm_type=norm_type, depthwise=depthwise), ELANBlock(self.feat_dims[5], self.feat_dims[6], self.squeeze_ratios[3], self.branch_depths[3], act_type=act_type, norm_type=norm_type, depthwise=depthwise) ) def forward(self, x): c1 = self.layer_1(x) c2 = self.layer_2(c1) c3 = self.layer_3(c2) c4 = self.layer_4(c3) c5 = self.layer_5(c4) outputs = [c3, c4, c5] return outputs # --------------------- Functions ----------------------- ## build backbone def build_backbone(cfg, pretrained=False): # build backbone if cfg['backbone'] == 'elannet_huge': backbone = ELANNet_Huge(cfg['bk_act'], cfg['bk_norm'], cfg['bk_dpw']) elif cfg['backbone'] == 'elannet_large': backbone = ELANNet_Lagre(cfg['bk_act'], cfg['bk_norm'], cfg['bk_dpw']) elif cfg['backbone'] == 'elannet_tiny': backbone = ELANNet_Tiny(cfg['bk_act'], cfg['bk_norm'], cfg['bk_dpw']) # pyramid feat dims feat_dims = backbone.feat_dims[-3:] # load imagenet pretrained weight if pretrained: url = model_urls[cfg['backbone']] if url is not None: print('Loading pretrained weight for {}.'.format(cfg['backbone'].upper())) checkpoint = torch.hub.load_state_dict_from_url( url=url, map_location="cpu", check_hash=True) # checkpoint state dict checkpoint_state_dict = checkpoint.pop("model") # model state dict model_state_dict = backbone.state_dict() # check for k in list(checkpoint_state_dict.keys()): if k in model_state_dict: shape_model = tuple(model_state_dict[k].shape) shape_checkpoint = tuple(checkpoint_state_dict[k].shape) if shape_model != shape_checkpoint: checkpoint_state_dict.pop(k) else: checkpoint_state_dict.pop(k) print(k) backbone.load_state_dict(checkpoint_state_dict) else: print('No backbone pretrained: ELANNet') return backbone, feat_dims if __name__ == '__main__': import time from thop import profile cfg = { 'pretrained': True, 'backbone': 'elannet_huge', 'bk_act': 'silu', 'bk_norm': 'BN', 'bk_dpw': False, } model, feats = build_backbone(cfg) x = torch.randn(1, 3, 224, 224) t0 = time.time() outputs = model(x) t1 = time.time() print('Time: ', t1 - t0) for out in outputs: print(out.shape) print('==============================') flops, params = profile(model, inputs=(x, ), verbose=False) print('==============================') print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2)) print('Params : {:.2f} M'.format(params / 1e6))