# -------------------------- Train YOLOX series -------------------------- python -m torch.distributed.run --nproc_per_node=8 train.py \ --cuda \ -dist \ -d coco \ --root /data/datasets/ \ -m yolov7_tiny\ -bs 128 \ -size 640 \ --wp_epoch 3 \ --max_epoch 300 \ --eval_epoch 10 \ --no_aug_epoch 15 \ --ema \ --fp16 \ --sybn \ --multi_scale \ # --load_cache \ # --resume weights/coco/yolox_l/yolox_l_best.pth \ # -------------------------- Train YOLOv1~v5 & v7 series -------------------------- # python -m torch.distributed.run --nproc_per_node=8 train.py \ # --cuda \ # -dist \ # -d coco \ # --root /data/datasets/ \ # -m yolov5_l\ # -bs 128 \ # -size 640 \ # --wp_epoch 3 \ # --max_epoch 300 \ # --eval_epoch 10 \ # --no_aug_epoch 10 \ # --ema \ # --fp16 \ # --sybn \ # --multi_scale \ # # --load_cache # # --resume weights/coco/yolov5_l/yolov5_l_best.pth \ # -------------------------- Train My RTCDet series -------------------------- # python -m torch.distributed.run --nproc_per_node=8 train.py \ # --cuda \ # -dist \ # -d coco \ # --root /data/datasets/ \ # -m rtcdet_v1_l\ # -bs 128 \ # -size 640 \ # --wp_epoch 3 \ # --max_epoch 300 \ # --eval_epoch 10 \ # --no_aug_epoch 20 \ # --ema \ # --fp16 \ # --sybn \ # --multi_scale \ # # --load_cache # # --resume weights/coco/rtcdet_v1_l/rtcdet_v1_l_best.pth \