import math import torch import torch.nn.functional as F import torch.distributed as dist from torchvision.ops.boxes import box_area # ------------------------- For loss ------------------------- ## FocalLoss def sigmoid_focal_loss(inputs, targets, num_boxes, alpha: float = 0.25, gamma: float = 2): """ Loss used in RetinaNet for dense detection: https://arxiv.org/abs/1708.02002. Args: inputs: A float tensor of arbitrary shape. The predictions for each example. targets: A float tensor with the same shape as inputs. Stores the binary classification label for each element in inputs (0 for the negative class and 1 for the positive class). alpha: (optional) Weighting factor in range (0,1) to balance positive vs negative examples. Default = -1 (no weighting). gamma: Exponent of the modulating factor (1 - p_t) to balance easy vs hard examples. Returns: Loss tensor """ prob = inputs.sigmoid() ce_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none") p_t = prob * targets + (1 - prob) * (1 - targets) loss = ce_loss * ((1 - p_t) ** gamma) if alpha >= 0: alpha_t = alpha * targets + (1 - alpha) * (1 - targets) loss = alpha_t * loss return loss.mean(1).sum() / num_boxes # ------------------------- For box ------------------------- def box_cxcywh_to_xyxy(x): x_c, y_c, w, h = x.unbind(-1) b = [(x_c - 0.5 * w), (y_c - 0.5 * h), (x_c + 0.5 * w), (y_c + 0.5 * h)] return torch.stack(b, dim=-1) def box_xyxy_to_cxcywh(x): x0, y0, x1, y1 = x.unbind(-1) b = [(x0 + x1) / 2, (y0 + y1) / 2, (x1 - x0), (y1 - y0)] return torch.stack(b, dim=-1) def bbox2delta(proposals, gt, means=(0., 0., 0., 0.), stds=(1., 1., 1., 1.)): # hack for matcher if proposals.size() != gt.size(): proposals = proposals[:, None] gt = gt[None] proposals = proposals.float() gt = gt.float() px, py, pw, ph = proposals.unbind(-1) gx, gy, gw, gh = gt.unbind(-1) dx = (gx - px) / (pw + 0.1) dy = (gy - py) / (ph + 0.1) dw = torch.log(gw / (pw + 0.1)) dh = torch.log(gh / (ph + 0.1)) deltas = torch.stack([dx, dy, dw, dh], dim=-1) means = deltas.new_tensor(means).unsqueeze(0) stds = deltas.new_tensor(stds).unsqueeze(0) deltas = deltas.sub_(means).div_(stds) return deltas def box_iou(boxes1, boxes2): area1 = box_area(boxes1) area2 = box_area(boxes2) lt = torch.max(boxes1[:, None, :2], boxes2[:, :2]) # [N,M,2] rb = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) # [N,M,2] wh = (rb - lt).clamp(min=0) # [N,M,2] inter = wh[:, :, 0] * wh[:, :, 1] # [N,M] union = area1[:, None] + area2 - inter iou = inter / union return iou, union def generalized_box_iou(boxes1, boxes2): """ Generalized IoU from https://giou.stanford.edu/ The boxes should be in [x0, y0, x1, y1] format Returns a [N, M] pairwise matrix, where N = len(boxes1) and M = len(boxes2) """ # degenerate boxes gives inf / nan results # so do an early check assert (boxes1[:, 2:] >= boxes1[:, :2]).all() assert (boxes2[:, 2:] >= boxes2[:, :2]).all() iou, union = box_iou(boxes1, boxes2) lt = torch.min(boxes1[:, None, :2], boxes2[:, :2]) rb = torch.max(boxes1[:, None, 2:], boxes2[:, 2:]) wh = (rb - lt).clamp(min=0) # [N,M,2] area = wh[:, :, 0] * wh[:, :, 1] return iou - (area - union) / area # ------------------------- For distributed ------------------------- def is_dist_avail_and_initialized(): if not dist.is_available(): return False if not dist.is_initialized(): return False return True def get_world_size(): if not is_dist_avail_and_initialized(): return 1 return dist.get_world_size()