# YOLOX: | Model | Batch | Scale | APval
0.5:0.95 | APval
0.5 | FLOPs
(G) | Params
(M) | Weight | |---------|-------|-------|------------------------|-------------------|-------------------|--------------------|--------| | YOLOX-S | 8xb8 | 640 | 40.1 | 60.3 | 26.8 | 8.9 | [ckpt](https://github.com/yjh0410/RT-ODLab/releases/download/yolo_tutorial_ckpt/yolox_s_coco.pth) | | YOLOX-M | 8xb8 | 640 | 46.2 | 66.0 | 74.3 | 25.4 | [ckpt](https://github.com/yjh0410/RT-ODLab/releases/download/yolo_tutorial_ckpt/yolox_m_coco.pth) | | YOLOX-L | 8xb8 | 640 | 48.7 | 68.0 | 155.4 | 54.2 | [ckpt](https://github.com/yjh0410/RT-ODLab/releases/download/yolo_tutorial_ckpt/yolox_l_coco.pth) | | YOLOX-X | 8xb8 | 640 | | | | | | - For training, we train YOLOX series with 300 epochs on COCO. - For data augmentation, we use the large scale jitter (LSJ), Mosaic augmentation and Mixup augmentation. - For optimizer, we use SGD with weight decay 0.0005 and base per image lr 0.01 / 64,. - For learning rate scheduler, we use Cosine decay scheduler. ## Train YOLOX ### Single GPU Taking training YOLOX-S on COCO as the example, ```Shell python train.py --cuda -d coco --root path/to/coco -m yolox_s -bs 16 -size 640 --wp_epoch 3 --max_epoch 300 --eval_epoch 10 --no_aug_epoch 20 --ema --fp16 --multi_scale ``` ### Multi GPU Taking training YOLOX-S on COCO as the example, ```Shell python -m torch.distributed.run --nproc_per_node=8 train.py --cuda -dist -d coco --root /data/datasets/ -m yolox_s -bs 128 -size 640 --wp_epoch 3 --max_epoch 300 --eval_epoch 10 --no_aug_epoch 20 --ema --fp16 --sybn --multi_scale --save_folder weights/ ``` ## Test YOLOX Taking testing YOLOX-S on COCO-val as the example, ```Shell python test.py --cuda -d coco --root path/to/coco -m yolox_s --weight path/to/yolox_s.pth -size 640 -vt 0.4 --show ``` ## Evaluate YOLOX Taking evaluating YOLOX-S on COCO-val as the example, ```Shell python eval.py --cuda -d coco-val --root path/to/coco -m yolox_s --weight path/to/yolox_s.pth ``` ## Demo ### Detect with Image ```Shell python demo.py --mode image --path_to_img path/to/image_dirs/ --cuda -m yolox_s --weight path/to/weight -size 640 -vt 0.4 --show ``` ### Detect with Video ```Shell python demo.py --mode video --path_to_vid path/to/video --cuda -m yolox_s --weight path/to/weight -size 640 -vt 0.4 --show --gif ``` ### Detect with Camera ```Shell python demo.py --mode camera --cuda -m yolox_s --weight path/to/weight -size 640 -vt 0.4 --show --gif ```