import torch import torch.nn as nn try: from .yolov8_basic import Conv, Yolov8StageBlock except: from yolov8_basic import Conv, Yolov8StageBlock # ---------------------------- Basic functions ---------------------------- ## ELAN-CSPNet class Yolov8Backbone(nn.Module): def __init__(self, width=1.0, depth=1.0, ratio=1.0, act_type='silu', norm_type='BN', depthwise=False): super(Yolov8Backbone, self).__init__() self.feat_dims = [round(64 * width), round(128 * width), round(256 * width), round(512 * width), round(512 * width * ratio)] # P1/2 self.layer_1 = Conv(3, self.feat_dims[0], k=3, p=1, s=2, act_type=act_type, norm_type=norm_type) # P2/4 self.layer_2 = nn.Sequential( Conv(self.feat_dims[0], self.feat_dims[1], k=3, p=1, s=2, act_type=act_type, norm_type=norm_type), Yolov8StageBlock(in_dim = self.feat_dims[1], out_dim = self.feat_dims[1], num_blocks = round(3*depth), shortcut = True, act_type = act_type, norm_type = norm_type, depthwise = depthwise) ) # P3/8 self.layer_3 = nn.Sequential( Conv(self.feat_dims[1], self.feat_dims[2], k=3, p=1, s=2, act_type=act_type, norm_type=norm_type), Yolov8StageBlock(in_dim = self.feat_dims[2], out_dim = self.feat_dims[2], num_blocks = round(6*depth), shortcut = True, act_type = act_type, norm_type = norm_type, depthwise = depthwise) ) # P4/16 self.layer_4 = nn.Sequential( Conv(self.feat_dims[2], self.feat_dims[3], k=3, p=1, s=2, act_type=act_type, norm_type=norm_type), Yolov8StageBlock(in_dim = self.feat_dims[3], out_dim = self.feat_dims[3], num_blocks = round(6*depth), shortcut = True, act_type = act_type, norm_type = norm_type, depthwise = depthwise) ) # P5/32 self.layer_5 = nn.Sequential( Conv(self.feat_dims[3], self.feat_dims[4], k=3, p=1, s=2, act_type=act_type, norm_type=norm_type), Yolov8StageBlock(in_dim = self.feat_dims[4], out_dim = self.feat_dims[4], num_blocks = round(3*depth), shortcut = True, act_type = act_type, norm_type = norm_type, depthwise = depthwise) ) self.init_weights() def init_weights(self): """Initialize the parameters.""" for m in self.modules(): if isinstance(m, torch.nn.Conv2d): # In order to be consistent with the source code, # reset the Conv2d initialization parameters m.reset_parameters() def forward(self, x): c1 = self.layer_1(x) c2 = self.layer_2(c1) c3 = self.layer_3(c2) c4 = self.layer_4(c3) c5 = self.layer_5(c4) outputs = [c3, c4, c5] return outputs # ---------------------------- Functions ---------------------------- ## build Yolov8's Backbone def build_backbone(cfg): # model backbone = Yolov8Backbone(width=cfg['width'], depth=cfg['depth'], ratio=cfg['ratio'], act_type=cfg['bk_act'], norm_type=cfg['bk_norm'], depthwise=cfg['bk_depthwise'] ) feat_dims = backbone.feat_dims[-3:] return backbone, feat_dims if __name__ == '__main__': import time from thop import profile cfg = { 'bk_act': 'silu', 'bk_norm': 'BN', 'bk_depthwise': False, 'width': 0.25, 'depth': 0.34, 'ratio': 2.0, } model, feats = build_backbone(cfg) x = torch.randn(1, 3, 640, 640) t0 = time.time() outputs = model(x) t1 = time.time() print('Time: ', t1 - t0) for out in outputs: print(out.shape) x = torch.randn(1, 3, 640, 640) print('==============================') flops, params = profile(model, inputs=(x, ), verbose=False) print('==============================') print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2)) print('Params : {:.2f} M'.format(params / 1e6))