import torch import torch.nn as nn import torch.nn.functional as F from .yolov7_basic import Conv, ELANBlockFPN, DownSample # PaFPN-ELAN (YOLOv7's) class Yolov7PaFPN(nn.Module): def __init__(self, in_dims=[512, 1024, 512], out_dim=None, width=1.0, depth=1.0, nbranch=4.0, act_type='silu', norm_type='BN', depthwise=False): super(Yolov7PaFPN, self).__init__() self.in_dims = in_dims c3, c4, c5 = in_dims # top dwon ## P5 -> P4 self.reduce_layer_1 = Conv(c5, round(256*width), k=1, norm_type=norm_type, act_type=act_type) self.reduce_layer_2 = Conv(c4, round(256*width), k=1, norm_type=norm_type, act_type=act_type) self.top_down_layer_1 = ELANBlockFPN(in_dim=round(256*width) + round(256*width), out_dim=round(256*width), expand_ratio=0.5, nbranch=nbranch, depth=depth, act_type=act_type, norm_type=norm_type, depthwise=depthwise ) # P4 -> P3 self.reduce_layer_3 = Conv(round(256*width), round(128*width), k=1, norm_type=norm_type, act_type=act_type) self.reduce_layer_4 = Conv(c3, round(128*width), k=1, norm_type=norm_type, act_type=act_type) self.top_down_layer_2 = ELANBlockFPN(in_dim=round(128*width) + round(128*width), out_dim=round(128*width), expand_ratio=0.5, nbranch=nbranch, depth=depth, act_type=act_type, norm_type=norm_type, depthwise=depthwise ) # bottom up # P3 -> P4 self.downsample_layer_1 = DownSample(in_dim=round(128*width), out_dim=round(256*width), act_type=act_type, norm_type=norm_type, depthwise=depthwise) self.bottom_up_layer_1 = ELANBlockFPN(in_dim=round(256*width) + round(256*width), out_dim=round(256*width), expand_ratio=0.5, nbranch=nbranch, depth=depth, act_type=act_type, norm_type=norm_type, depthwise=depthwise ) # P4 -> P5 self.downsample_layer_2 = DownSample(in_dim=round(256*width), out_dim=round(512*width), act_type=act_type, norm_type=norm_type, depthwise=depthwise) self.bottom_up_layer_2 = ELANBlockFPN(in_dim=round(512*width) + c5, out_dim=round(512*width), expand_ratio=0.5, nbranch=nbranch, depth=depth, act_type=act_type, norm_type=norm_type, depthwise=depthwise ) # head conv self.head_conv_1 = Conv(round(128*width), round(256*width), k=3, p=1, act_type=act_type, norm_type=norm_type, depthwise=depthwise) self.head_conv_2 = Conv(round(256*width), round(512*width), k=3, p=1, act_type=act_type, norm_type=norm_type, depthwise=depthwise) self.head_conv_3 = Conv(round(512*width), round(1024*width), k=3, p=1, act_type=act_type, norm_type=norm_type, depthwise=depthwise) # output proj layers if out_dim is not None: self.out_layers = nn.ModuleList([ Conv(in_dim, out_dim, k=1, norm_type=norm_type, act_type=act_type) for in_dim in [round(256*width), round(512*width), round(1024*width)] ]) self.out_dim = [out_dim] * 3 else: self.out_layers = None self.out_dim = [round(256*width), round(512*width), round(1024*width)] def forward(self, features): c3, c4, c5 = features # Top down ## P5 -> P4 c6 = self.reduce_layer_1(c5) c7 = F.interpolate(c6, scale_factor=2.0) c8 = torch.cat([c7, self.reduce_layer_2(c4)], dim=1) c9 = self.top_down_layer_1(c8) ## P4 -> P3 c10 = self.reduce_layer_3(c9) c11 = F.interpolate(c10, scale_factor=2.0) c12 = torch.cat([c11, self.reduce_layer_4(c3)], dim=1) c13 = self.top_down_layer_2(c12) # Bottom up # p3 -> P4 c14 = self.downsample_layer_1(c13) c15 = torch.cat([c14, c9], dim=1) c16 = self.bottom_up_layer_1(c15) # P4 -> P5 c17 = self.downsample_layer_2(c16) c18 = torch.cat([c17, c5], dim=1) c19 = self.bottom_up_layer_2(c18) c20 = self.head_conv_1(c13) c21 = self.head_conv_2(c16) c22 = self.head_conv_3(c19) out_feats = [c20, c21, c22] # [P3, P4, P5] # output proj layers if self.out_layers is not None: out_feats_proj = [] for feat, layer in zip(out_feats, self.out_layers): out_feats_proj.append(layer(feat)) return out_feats_proj return out_feats def build_fpn(cfg, in_dims, out_dim=None): model = cfg['fpn'] # build pafpn if model == 'yolov7_pafpn': fpn_net = Yolov7PaFPN(in_dims=in_dims, out_dim=out_dim, width=cfg['width'], depth=cfg['depth'], nbranch=cfg['nbranch'], act_type=cfg['fpn_act'], norm_type=cfg['fpn_norm'], depthwise=cfg['fpn_depthwise'] ) return fpn_net