# YOLOv8: | Model | Batch | Scale | APval
0.5:0.95 | APval
0.5 | FLOPs
(G) | Params
(M) | Weight | |-----------|--------|-------|------------------------|-------------------|-------------------|--------------------|--------| | YOLOv8-N | 8xb16 | 640 | 37.0 | 52.9 | 8.8 | 3.2 | [ckpt](https://github.com/yjh0410/RT-ODLab/releases/download/yolo_tutorial_ckpt/yolov8_n_coco.pth) | | YOLOv8-S | 8xb16 | 640 | | | | | | | YOLOv8-M | 8xb16 | 640 | | | | | | | YOLOv8-L | 8xb16 | 640 | 50.7 | 68.3 | 165.7 | 43.7 | [ckpt](https://github.com/yjh0410/RT-ODLab/releases/download/yolo_tutorial_ckpt/yolov8_l_coco.pth) | - For training, we train YOLOv8 series with 500 epochs on COCO. - For data augmentation, we use the large scale jitter (LSJ), Mosaic augmentation and Mixup augmentation, following the setting of [YOLOv8](https://github.com/ultralytics/yolov8). - For optimizer, we use AdamW with weight decay 0.05 and base per image lr 0.001 / 64, which is different from the official YOLOv8. We have tried SGD, but it has weakened performance. For example, when using SGD, YOLOv8-N's AP was only 35.8%, lower than the current result (36.8 %), perhaps because some hyperparameters were not set properly. - For learning rate scheduler, we use linear decay scheduler. ## Train YOLOv8 ### Single GPU Taking training YOLOv8-S on COCO as the example, ```Shell python train.py --cuda -d coco --root path/to/coco -m yolov8_s -bs 16 -size 640 --wp_epoch 3 --max_epoch 300 --eval_epoch 10 --no_aug_epoch 20 --ema --fp16 --multi_scale ``` ### Multi GPU Taking training YOLOv8 on COCO as the example, ```Shell python -m torch.distributed.run --nproc_per_node=8 train.py --cuda -dist -d coco --root /data/datasets/ -m yolov8_s -bs 128 -size 640 --wp_epoch 3 --max_epoch 300 --eval_epoch 10 --no_aug_epoch 20 --ema --fp16 --sybn --multi_scale --save_folder weights/ ``` ## Test YOLOv8 Taking testing YOLOv8 on COCO-val as the example, ```Shell python test.py --cuda -d coco --root path/to/coco -m yolov8_s --weight path/to/yolov8.pth -size 640 -vt 0.4 --show ``` ## Evaluate YOLOv8 Taking evaluating YOLOv8 on COCO-val as the example, ```Shell python eval.py --cuda -d coco-val --root path/to/coco -m yolov8_s --weight path/to/yolov8.pth ``` ## Demo ### Detect with Image ```Shell python demo.py --mode image --path_to_img path/to/image_dirs/ --cuda -m yolov8_s --weight path/to/weight -size 640 -vt 0.4 --show ``` ### Detect with Video ```Shell python demo.py --mode video --path_to_vid path/to/video --cuda -m yolov8_s --weight path/to/weight -size 640 -vt 0.4 --show --gif ``` ### Detect with Camera ```Shell python demo.py --mode camera --cuda -m yolov8_s --weight path/to/weight -size 640 -vt 0.4 --show --gif ```