#!/usr/bin/env python3 # -*- coding:utf-8 -*- import torch import torch.nn as nn from .loss import build_criterion from .yolov1 import YOLOv1 # build object detector def build_yolov1(args, cfg, device, num_classes=80, trainable=False, deploy=False): print('==============================') print('Build {} ...'.format(args.model.upper())) print('==============================') print('Model Configuration: \n', cfg) # -------------- Build YOLO -------------- model = YOLOv1(cfg = cfg, device = device, img_size = args.img_size, num_classes = num_classes, conf_thresh = args.conf_thresh, nms_thresh = args.nms_thresh, trainable = trainable, deploy = deploy, nms_class_agnostic = args.nms_class_agnostic ) # -------------- Initialize YOLO -------------- # Init bias init_prob = 0.01 bias_value = -torch.log(torch.tensor((1. - init_prob) / init_prob)) # obj pred b = model.obj_pred.bias.view(1, -1) b.data.fill_(bias_value.item()) model.obj_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True) # cls pred b = model.cls_pred.bias.view(1, -1) b.data.fill_(bias_value.item()) model.cls_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True) # reg pred b = model.reg_pred.bias.view(-1, ) b.data.fill_(1.0) model.reg_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True) w = model.reg_pred.weight w.data.fill_(0.) model.reg_pred.weight = torch.nn.Parameter(w, requires_grad=True) # -------------- Build criterion -------------- criterion = None if trainable: # build criterion for training criterion = build_criterion(cfg, device, num_classes) return model, criterion