# RTCDet-v1: My First Empirical Study of Real-Time Convolutional Object Detectors. | Model | Scale | Batch | APtest
0.5:0.95 | APtest
0.5 | APval
0.5:0.95 | APval
0.5 | FLOPs
(G) | Params
(M) | Weight | |------------|-------|-------|-------------------------|--------------------|------------------------|-------------------|-------------------|--------------------|--------| | RTCDetv1-N | 640 | 8xb16 | 35.7 | 53.8 | 35.6 | 53.8 | 9.1 | 2.4 | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/rtcdet_v1_n_coco.pth) | | RTCDetv1-T | 640 | 8xb16 | 40.5 | 59.1 | 40.3 | 59.1 | 19.0 | 5.1 | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/rtcdet_v1_t_coco.pth) | | RTCDetv1-S | 640 | 8xb16 | 43.6 | 62.6 | 43.3 | 62.6 | 33.6 | 9.0 | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/rtcdet_v1_s_coco.pth) | | RTCDetv1-M | 640 | 8xb16 | 48.3 | 67.0 | 48.1 | 66.9 | 87.4 | 23.6 | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/rtcdet_v1_m_coco.pth) | | RTCDetv1-L | 640 | 8xb16 | 50.2 | 68.6 | 50.0 | 68.4 | 176.6 | 47.6 | [ckpt](https://github.com/yjh0410/PyTorch_YOLO_Tutorial/releases/download/yolo_tutorial_ckpt/rtcdet_v1_l_coco.pth) | | RTCDetv1-X | 640 | 8xb12 | | | | | | | | - For training, we train my RTCDetv1 series series with 300 epochs on COCO. - For data augmentation, we use the large scale jitter (LSJ), Mosaic augmentation and Mixup augmentation, following the setting of [YOLOX](https://github.com/ultralytics/yolov5), but we remove the rotation transformation which is used in YOLOX's strong augmentation. - For optimizer, we use AdamW with weight decay 0.05 and base per image lr 0.001 / 64. - For learning rate scheduler, we use linear decay scheduler. - Due to my limited computing resources, I can not train `RTCDetv1-X` with the setting of `batch size=128`.